🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On the stability of a nonlinear nonautonomous scalar equation with variable delay

Cover Page

Cite item

Full Text

Abstract

The stability problem of a scalar functional differential equation is a classical one. It has been most fully studied for linear equations. Modern research on modeling biological, infectious and other processes leads to the need to determine the qualitative properties of the solutions for more general equations. In this paper we study the stability and the global limit behavior of solutions to a nonlinear one-dimensional (scalar) equation with variable delay with unbounded and bounded right-hand sides. In particular, our research is reduced to a problem on the stability of a non-stationary solution of a nonlinear scalar Lotka-Volterra-type equation, on the stabilization and control of a non-stationary process described by such an equation. The problem posed is considered depending on the delay behavior: is it a bounded differentiable function or a continuous and bounded one. The study is based on the application of the Lyapunov-Krasovsky functionals method as well as the corresponding theorems on the stability of non-autonomous functional differential equations of retarded type with finite delay. Sufficient conditions are derived for uniform asymptotic stability of the zero solution, including global stability, for every continuous initial function. Using the theorem proven by one of the co-authors on the limiting behavior of solutions to a non-autonomous functional differential equation based on the Lyapunov functional with a semidefinite derivative, the properties of the solutions’ attraction to the set of equilibrium states of the equation under study are obtained. In addition, illustrative examples are provided.

About the authors

Jumanazar Kh. Khusanov

Sambhram University

Email: d.khusanov1952@mail.ru
ORCID iD: 0000-0001-9444-9324

Dr. Sc. (Physics and Mathematics), Professor

Uzbekistan, 3, H. Nosirov Street, Jizzakh 130100, Uzbekistan

Azizbeck E. Azizbeck E. Kaxxorov

Academic lyceum of Tashkent State Technical University named after I.Karimov

Author for correspondence.
Email: azizqahhorov@gmail.com
ORCID iD: 0000-0001-5723-8640

Graduate Student

Uzbekistan, 2, University street, Tashkent 100095, Uzbekistan

References

  1. A. D. Myshkis, Linear differential equations with delayed argument, GITTL Publ., Moscow, Leningrad, 1951 (In Russ.), 254 p.
  2. R. Bellman, K. L. Cooke, Differential-difference equations, Academic Press, New York, 1963, 478 p.
  3. N. N. Krasovsky, Stability of motion, Stanford University Press, Stanford, 1963, 194 p.
  4. J. K. Hale, Theory of functional differential equations, Springer, New York, 1971 DOI:
  5. https://doi.org/10.1007/978-1-4612-9892-2, 366 p.
  6. T. Amemiya, "On the delay-independent stability of a delayed differential equation of 1st order", J. Math. Anal. and Appl., 142:1 (1989), 13—25. DOI: https://doi.org/10.1016/0022-247X(89)90159-5
  7. T. Krisztin, "On stability properties for one-dimensional functional-differential equations", Funkcial. Ekvac., 34:2 (1991), 241–256.
  8. V. V. Malygina, K. M. Chudinov, "Stability of solutions to differential equations with several variable delays. III", Russian Mathematics (Izvestiya VUZ. Matematika), 57:8 (2013), 37–48. DOI: https://doi.org/10.3103/S1066369X13080057
  9. L. Berezansky, E. Braverman, "Stability conditions for scalar delay differential equations with a non-delay term", Applied Mathematics and Computation, 250:5 (2015), 157–164. DOI: https://doi.org/10.1016/j.amc.2014.10.088
  10. A. Egorov, "On the stability analysis of equations with bounded timevarying delay", J. IFAC-Papers on Line, 52:18 (2019), 85—90. DOI: https://doi.org/10.1016/j.ifacol.2019.12.211
  11. L. Berezansky, E. Braverman, "On exponential stability of linear delay equations with oscillatory coefficients and kernels", Differential and Integral Equations, 35:9-10 (2022), 559–580. DOI: https://doi.org/10.48550/arXiv.2208.09018
  12. T. Yoneyama, "Uniform stability for one dimensional delay-differential equations with dominant delayed term", Tohoku Math J., 41:2 (1989), 217–236.
  13. T. A. Burton, "Uniform asymptotic stability in functional differential equations", Proceedings of the American Mathematical Society, 68:2 (1978), 195—199. DOI: https://doi.org/10.2307/2041771
  14. T. Burton, L. Hatvani, "Stability theorems for nonautonomous functional differential equations by Liapunov functionals", Tohoku Mathematical Journal, Second Series, 41:1 (1989), 65—104. DOI: https://doi.org/10.2748/tmj/1178227868
  15. L. Hatvani, "On the asymptotic stability for nonautonomous functional differential equations by Lyapunov functionals", Transactions of the American Mathematical Society, 354:9 (2002), 3555–3571.
  16. N. V. Pertsev, B. Yu. Pichugin, A. N. Pichugina, "Investigation of solutions to one family of mathematical models of living systems", Russian Math. (Iz. VUZ), 61:9 (2017), 54–68.
  17. N. V. Pertsev, "Application of differential equations with variable delay in the compartmental models of living systems", Sib. Zh. Ind. Mat., 24:3 (2021), 55—73. DOI: https://doi.org/10.33048/SIBJIM.2021.24.305
  18. J. K. Khusanov, A. E. Kaxxorov, "On the stability of Lotka-Volterra model with a delay", Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 24:2 (2022), 175–184.
  19. DOI: https://doi.org/10.15507/2079-6900.24.202202.175-184
  20. A. V. Ekimov, A. P. Zhabko, P. V. Yakovlev, "The stability of differential-difference systems with linearly increasing delay. II. Systems with additive right side", Bulletin of St. Petersburg University. Applied Mathematics. Computer science. Management processes, 19:1 (2023), 4—9. DOI: https://doi.org/10.21638/11701/spbul0.2023.101
  21. A. S. Andreev, D. Kh. Khusanov, "On the method of Lyapunov functionals in the problem of asymptotic stability and instability", Differential Equations, 34:7 (1998), 876–885.
  22. D. Kh. Khusanov, On the constructive and qualitative theory of functional differential equations, Tashkent: FAN. AN RUz, 2002 (In Russ.), 256 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Khusanov J.K., Azizbeck E. Kaxxorov A.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».