Nonholonomic mechanical systems on a plane with a variable slope
- Authors: Mikishanina E.A.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences Chuvash State University
- Issue: Vol 25, No 4 (2023)
- Pages: 326-341
- Section: Applied mathematics and mechanics
- Submitted: 23.12.2025
- Accepted: 23.12.2025
- Published: 24.12.2025
- URL: https://journal-vniispk.ru/2079-6900/article/view/360897
- DOI: https://doi.org/10.15507/2079-6900.25.202304.326-341
- ID: 360897
Cite item
Full Text
Abstract
This paper considers such nonholonomic mechanical systems as Chaplygin skate, inhomogeneous Chaplygin sleigh and Chaplygin sphere moving in the gravity field along an oscillating plane with a slope varying with the periodic law. By explicit integration of the equations of motion, analytical expressions for the velocities and trajectories of the contact point for Chaplygin skate and Chaplygin sleigh are obtained. Numerical parameters of the periodic law for the inclination angle change are found, such that the velocity of Chaplygin skate will be unbounded, that is, an acceleration will take place. In the case of inhomogeneous Chaplygin sleigh, on the contrary, numerical parameters of the periodic law of the inclination angle change are found, for which the sleigh velocity is bounded and there is no drift of the sleigh. For similar numerical parameters and initial conditions, when the sleigh moves along a horizontal or inclined plane with the constant slope, the velocity and trajectory of the contact point are unbounded, that is, there is a drift of the sleigh. A similar problem is solved for the Chaplygin sphere; its trajectories are constructed on the basis of numerical integration. The results are illustrated graphically. The control of the slope of the plane, depending on the angular momentum of the sphere, is proposed for discussion. Regardless of the initial conditions, such control can almost always prevent the drift of the sphere in one of the directions.
About the authors
Evgeniya A. Mikishanina
Steklov Mathematical Institute of Russian Academy of SciencesChuvash State University
Author for correspondence.
Email: evaeva_84@mail.ru
ORCID iD: 0000-0003-4408-1888
Ph.D.(Phys.-Math.),
Researcher, Department of Mechanics,
associate professor, Department of Actuarial and Financial Mathematics
Russian Federation, 8 Gubkina st., Moscow 119991, Russia 15 Moskovskii av., Cheboksary 428015, Russia
References
- A. V. Borisov, I. S. Mamaev, "The dynamics of a Chaplygin sleigh", J. Appl. Math. Mech., 73:2 (2009), 156–161. DOI: https://doi.org/10.1016/j.jappmathmech.2009.04.005
- I. A. Bizyaev, "A Chaplygin sleigh with a moving point mass", Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 27:4 (2017), 583–589 (In Russ.). DOI: https://doi.org/10.20537/vm170408
- A. V. Karapetyan, A. Y. Shamin, "On motion of Chaplygin sleigh on a horizontal plane with dry friction", Mechanics of Solids, 54:5 (2019), 632–637. DOI: https://doi.org/10.20537/nd190205
- S. A. Chaplygin, "On a ball’s rolling on a horizontal plane", Regul. Chaotic Dyn., 7:2 (2002), 131–148. DOI: https://doi.org/10.1070/RD2002v007n02ABEH000200
- A. A. Kilin, "The dynamics of Chaplygin ball: The qualitative and computer analysis", Regul. Chaotic Dyn., 6:3 (2001), 291–306. DOI: https://doi.org/10.1070/RD2001v006n03ABEH000178
- E. A. Mikishanina, "Dynamics of the Chaplygin sphere with additional constraint", Communications in Nonlinear Science and Numerical Simulation, 117 (2023), 106920. DOI: https://doi.org/10.1016/j.cnsns.2022.106920
- A. V. Borisov, I. S. Mamaev, "Chaplygin’s Ball Rolling Problem Is Hamiltonian", Math. Notes, 70:5 (2001), 720–723. DOI: https://doi.org/10.1023/A:1012995330780
- A.V. Borisov, A. O. Kazakov, I. R. Sataev, "Regular and chaotic attractors in nonholonomic Chaplygin top model", Nelin. dinam., 10:3 (2014), 361–380 (In Russ.), https://www.mathnet.ru/eng/nd450.
- A.V. Borisov, A. O. Kazakov, I. R. Sataev, "Spiral Chaos in the Nonholonomic Model of a Chaplygin Top", Regul. Chaotic Dyn., 21:7–8 (2016), 939–954. DOI: https://doi.org/10.1134/S1560354716070157
- A.V. Borisov, I. S. Mamaev, "Motion of Chaplygin ball on an inclined plane", Doklady Physics, 51:2 (2006), 73–76. DOI: https://doi.org/10.1134/S1028335806020078
- E. I. Kharlamova., "Rolling of the ball on an inclined plane", Prikl. Mat. Mekh., 22:4 (1958), 504–509 (In Russ.).
- A. V. Borisov, A. A. Kilin, I. S. Mamaev, "On the Hadamard–Hamel Problem and the Dynamics of Wheeled Vehicles", Regul. Chaotic Dyn., 20:6 (2015), 752–766. DOI: https://doi.org/10.1134/S1560354715060106
- A. V. Borisov, I. S. Mamaev, "An inhomogeneous Chaplygin sleigh", Regul. Chaotic Dyn., 22:4 (2017), 435–447. DOI: https://doi.org/10.1134/S1560354717040062
- Y. Rocard, Línstabilité en mécanique: Automobiles, avions, ponts suspendus, Masson, Paris, 1954.
- A. V. Borisov, A. A. Kilin, I. S. Mamaev, "The problem of drift and recurrence for the rolling Chaplygin ball", Regul. Chaotic Dyn., 18:6 (2013), 832–859. DOI: https://doi.org/10.1134/S1560354713060166
Supplementary files


