Application of the Full Approximation Scheme Multigrid Method to solving one-dimensional nonlinear partial differential equations by the Discontinuous Galerkin Method
- Authors: Zhalnin R.V.1, Nefedov M.S.1, Zinina S.K.1
-
Affiliations:
- National Research Mordovia State University
- Issue: Vol 27, No 4 (2025)
- Pages: 435-450
- Section: Applied mathematics and mechanics
- Submitted: 13.01.2026
- Accepted: 13.01.2026
- Published: 13.01.2026
- URL: https://journal-vniispk.ru/2079-6900/article/view/365438
- DOI: https://doi.org/10.15507/2079-6900.27.202504.435-450
- ID: 365438
Cite item
Full Text
Abstract
This paper considers the Full Approximation Scheme (FAS) multigrid method for the Discontinuous Galerkin method with implicit time discretization. The objective of the research is to apply this method to efficient solution of problems governed by nonlinear partial differential equations. A computational algorithm has been developed that implements the Full Approximation Scheme multigrid method using Newton's method and an improved Newton-Krylov method to solve the arising nonlinear equations at each grid level of the multigrid method. This approach significantly improves the efficiency of the algorithm and reduces required computational resources. Numerical experiments were conducted applying both approaches for solving the Hopf equation. The influence of the regularization parameter and of the Courant number on the convergence rate of Newton's method outer iterations was investigated. It has been experimentally demonstrated that the use of the Newton-Krylov method significantly improves the overall performance of the computational process compared to the traditional Newton's method, although both approaches demonstrate a similar order of convergence, approaching second order when using quadratic basis functions.
About the authors
Ruslan V. Zhalnin
National Research Mordovia State University
Email: zhrv@mrsu.ru
ORCID iD: 0000-0002-1103-3321
Ph.D. (Phys. and Math.), Dean of the Faculty of Mathematics and IT
Russian Federation, 68/1 Bolshevistskaya St., Saransk, 430005, RussiaMikhail S. Nefedov
National Research Mordovia State University
Email: snef7@yandex.ru
ORCID iD: 0009-0002-7347-2191
Postgraduate Student, Department of Applied Mathematics
Russian Federation, 68/1 Bolshevistskaya St., Saransk, 430005, RussiaSvetlana K. Zinina
National Research Mordovia State University
Author for correspondence.
Email: zininaskh@math.mrsu.ru
ORCID iD: 0000-0003-3002-281X
h.D. (Math.), Associate Professor, Department of Applied Mathematics
Russian Federation, 68/1 Bolshevistskaya St., Saransk, 430005, RussiaReferences
- B. Cockburn, ''An Introduction to the Discontinuous Galerkin Method for Convection Dominated Problems'', Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, Springer, Berlin, 1998, 151–268.
- J. S. Hesthaven, T. Warburton, ''Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications.'', 2008. doi: 10.1007/978-0-387-72067-8
- R. V. Zhalnin, M. E. Ladonkina, V. F. Masyagin, V. F. Tishkin, ''Discontinuous finite-element galerkin method for numerical solution of parabolic problems in anisotropic media on triangle grids'', Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming, Computer Software, 9:3 (2016), 144-151. DOI:
- 14529/mmp160313
- R. V. Zhalnin, M. E. Ladonkina, V. F. Masyagin, V. F. Tishkin, ''Solving the problem of non-stationary filtration of substance by the discontinuous Galerkin method on unstructured grids'', Computational Mathematics and Mathematical Physics, 56:6 (2016), 977-986. doi: 10.1134/S0965542516060245
- M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, ''Entropy stable discontinuous Galerkin method for two-dimensional Euler equations'', Math. Models Comput. Simul., 13:5 (2021), 897–906. doi: 10.20948/mm-2021-02-09
- V. F. Masyagin, R. V. Zhalnin, V. F. Tishkin, ''Application of an implicit scheme of the discontinuous galerkin method to solving gas dynamics problems on NVIDIA graphic accelerators'', Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming, Computer Software, 15:2 (2022), 86–99. DOI:
- 14529/mmp220207
- P.-O. Persson, J. Peraire, ''Newton-GMRES Preconditioning for Discontinuous Galerkin Discretizations of the Navier-Stokes Equations.'', SIAM Journal on Scientific Computing, 30:6 (2008), 2709–2733.. doi: 10.1137/070692108
- M. Franciolini, L. Botti, A. Colombo, A. Crivellini, ''p-multigrid matrixfree discontinuous galerkin solution strategies for the under-resolved simulation of incompressible turbulent flows'', Computers Fluids, 2020. DOI:
- 48550/arXiv.1809.00866
- N. Lei, D. Zhang, W. Zheng, ''P-multigrid method for the discontinuous galerkin discretization of elliptic problems'', Journal of Scientific Computing, 105:76 (2025). doi: 10.1007/s10915-025-03105-7
- L. Botti, A. Colombo, F. Bassi, ''h-multigrid agglomeration based solution strategies for discontinuous galerkin discretizations of incompressible flow problems'', Journal of Computational Physics, 2017, 382–415. doi: 10.1016/j.jcp.2017.07.002
- A. V. Wolkov, ''Application of the multigrid approach for solving 3D NavierStokes equations on hexahedral grids using the discontinuous Galerkin method'', Computational Mathematics and Mathematical Physics, 50:3 (2010), 495–508. doi: 10.1134/S0965542510030103
- P. F. Antonietti, M. Sarti, M. Verani, ''Multigrid algorithms for hp-discontinuous galerkin discretizations of elliptic problems'', SIAM Journal on Numerical Analysis, 53:1 (2015), 598–618. doi: 10.1137/130947015
- G. Fu, W. Kuang, ''hp-Multigrid Preconditioner for a Divergence-Conforming HDG Scheme for the Incompressible Flow Problems'', J. Sci Comput., 100:16 (2024). doi: 10.1007/s10915-024-02568-4
- A. Brandt, Multi-level Adaptive Computations in Fluid Dynamics, Williamsburg, 1979 (Technical Report AIAA-79-1455).
- W. Feng, Z. Guo, J. S. Lowengrub, S. M. Wise, ''A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on block-structured, locally-cartesian grids'', Journal of Computational Physics, 352 (2018), 463–497. doi: 10.1016/j.jcp.2017.09.065
- A. V. Gorobets, ''An approach to the implementation of the multigrid method with full approximation for CFD problems'', Comput. Math. Math. Phys., 63:11 (2023), 2150–2161. doi: 10.1134/S0965542523110106
- A. V. Gorobets, S. A. Sukov, A. R. Magomedov, ''Heterogeneous Parallel Implementation of the Full Approximation Scheme Multigrid Method in the NOISETTE Software Package'', Math. Models Comput. Simul., 16:4 (2024), 609–619. doi: 10.1134/S2070048224700261
- T. F. Chan, K. R. Jackson, ''Nonlinearly preconditioned Krylov subspace methods for discrete Newton algorithms'', SIAM J. Sci. Stat. Comput., 5 (1984), 533–542.
- P. N. Brown, Y. Saad, ''Hybrid Krylov methods for nonlinear systems of equations'', SIAM J. Sci. Stat. Comput., 11 (1990), 450–481.
- D. A. Knoll, D. E. Keyes, ''Jacobian-free Newton-Krylov methods: a survey of approaches and applications'', Journal of Computational Physics, 193:2 (2004), 357–397. doi: 10.1016/j.jcp.2003.08.010
- A. H. Baker, E. R. Jessup, T. Manteuffel, ''A Technique for Accelerating the Convergence of Restarted GMRES'', SIAM J. Matrix Anal. Appl., 26:4 (2005), 962–984. doi: 10.1137/S0895479803422014
Supplementary files


