On an iterative method for solving optimal control problems for an elliptic type system

Capa

Citar

Texto integral

Resumo

An important class of applied problems is that of optimal control of some objects’ state. It is required to select control actions in such a way as to achieve desired effect. We deal with distributed systems, since their state is described by a partial differential equation. In this paper we study an iterative process for solving the problem of optimal control for an elliptic type system. Similar problem arises during the control of thermal processes. The quality of system state control is estimated by a given quality functional defined on the solution of the Dirichlet problem for an elliptic equation. One of the most important classes of thermal process control problems is temperature control, which means maintaining given temperature in the computational domain due to certain thermal effects. Here, a distributed internal heat source acts as a control. In the paper, we study statement correctness of the optimal control problem with a regularized functional. More precisely, we examine control problem for a system described by an elliptic type equation and formulate its optimality condition in the form of a system of equations for initial and conjugate states. An iterative method is proposed for solving the optimal control problem of an elliptic type system. Convergence of the iterative process is studied, and the rate of convergence is estimated.

Sobre autores

Mahmut Fairuzov

Bashkir State University

Email: fairuzovme@mail.ru
ORCID ID: 0000-0002-9118-660X

Ph.D. (Phys.-Math.), Associate Professor, Department of Information Technology and Computer Mathematics

Rússia, 32 Zaki Validi St., Ufa 450076, Russia

Fedor Lubyshev

Bashkir State University

Autor responsável pela correspondência
Email: maxam721@mail.ru
ORCID ID: 0000-0002-3279-4293

Dr.Sci. (Phys.-Math.), Professor, Department of Information Technology and Computer Mathematics

Rússia, 32 Zaki Validi St., Ufa 450076, Russia

Bibliografia

  1. J. L. Lions, Controle optimal do systemes gouvernes par des equations aux derivees partielles, Dunod, Gauthier-Villars, Paris, 1968, 426 p.
  2. V. G. Litvinov, [Optimization in elliptic boundary value problems with applications to mechanics], Nauka, Moscow, 1987 (In Russ.), 368 p.
  3. F. P. Vasil’ev, [Optimization methods], Faktorial Press, Moscow, 2002 (In Russ.), 824 p.
  4. F. V. Lubyshev, [Difference approximations of optimal control problems for systems described by partial differential equations], BashGU, Ufa, 1999 (In Russ.).
  5. V. P. Mikhaylov, [Partial Differential Equations], Nauka Publ., Moscow, 1976 (In Russ.), 391 p.
  6. O. A. Ladyzhenskaya, [Boundary value problems of mathematical physics], Nauka Publ., Moscow, 1973 (In Russ.), 408 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Fairuzov M.E., Lubyshev F.V., 2026

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».