On the stability of Lotka-Volterra model with a delay
- Авторлар: Khusanov J.K.1, Kaxxorov A.E.2
-
Мекемелер:
- Jizzakh Polytechnic Institute
- I. Karimov Tashkent State Technical University
- Шығарылым: Том 24, № 2 (2022)
- Беттер: 175-184
- Бөлім: Mathematics
- ##submission.dateSubmitted##: 12.01.2026
- ##submission.dateAccepted##: 12.01.2026
- ##submission.datePublished##: 12.01.2026
- URL: https://journal-vniispk.ru/2079-6900/article/view/365029
- DOI: https://doi.org/10.15507/2079-6900.24.202202.175-184
- ID: 365029
Дәйексөз келтіру
Толық мәтін
Аннотация
The paper examines the stability problem of biological, economic and other processes modeled by the Lotka-Volterra equations with delay. The difference between studied equations and the known ones is that the adaptability functions and the coefficients of the relative change of the interacting subjects or objects are non-linear and take into account variable delay in the action of factors affecting the number of subjects or objects. Moreover, these functions admit the existence of equilibrium positions’ set that is finite in a bounded domain. The stability study of three types of equilibrium positions is carried out using direct analysis of perturbed equations and construction of Lyapunov functionals that satisfy conditions of well-known theorems. Corresponding sufficient conditions for asymptotic stability including global stability are derived, as well as instability and attraction conditions of these positions.
Авторлар туралы
Jumanazar Khusanov
Jizzakh Polytechnic Institute
Email: d.khusanov1952@mail.ru
ORCID iD: 0000-0001-9444-9324
Ph.D. (Phys.-Math.), Professor, Jizzakh Polytechnic Institute
Өзбекстан, 4 I. Karimov St., Jizakh 130100, UzbekistanAzizbeck Kaxxorov
I. Karimov Tashkent State Technical University
Хат алмасуға жауапты Автор.
Email: azizqahhorov@gmail.com
ORCID iD: 0000-0001-5723-8640
Graduate Student
Өзбекстан, 2 University St., Tashkent 100095, UzbekistanӘдебиет тізімі
- V. Volterra, Lecons sur la theorie mathematique de la lutte pour la vie, Gauthier-Villars, Paris, 1990, 226 p.
- V. Volterra, Theory of functionals and of integral and integro-differential equations, Dover Publications, New York, 1959, 288 p.
- A. J. Lotka, Elements of physical biology, Williams and Wilkins Co, Baltimore, 1925, 460 p.
- J. Hale, Theory of functional differential equations, Springer-Verlag, New York, 1977 DOI: https://doi.org/10.1007/978-1-4612-9892-2, 366 p.
- Yu. M. Sverezhev, D. O. Logofet, Stability of biological communities, Nauka, Moscow, 1978 (In Russ.), 352 p.
- A. I. Kiryanen, Stability of systems with aftereffect and their applications, St. Petersburg University Publ., St. Petersburg, 1994 (In Russ.), 240 p.
- A. Yu. Alexandrov, A. V. Platonov, V. N. Starkov, N. A. Stepanenko, Mathematical modeling and study of the stability of biological communities, Lan Publ., St. Petersburg, 2017 (In Russ.), 270 p.
- N. Rouche, P. Habets, M. Laloy, Stability theory by Lyapunov’s direct method, Springer, New York, 1977 DOI: https://doi.org/10.1007/978-1-4684-9362-7, 396 p.
- N. N. Krasovskii, Stability of motion, Standford University Press, Standford, 1963, 218 p
- A. S. Andreev, D. Kh. Khusanov, “On the method of Lyapunov functionals in the problem of asymptotic stability and instability”, Differential Equations, 34:7 (1998), 876–885 (In Russ.).
- D. Kh. Khusanov, On the constructive and qualitative theory of functional differential equations, Fan Publ., Tashkent, 2002 (In Russ.).
Қосымша файлдар


