СО2 fluxes between clear-cut surface and atmosphere in the protective zone of the Central Forest State Nature Biosphere Reserve
- Авторлар: Tatarinov F.A.1, Molchanov A.G.2, Ivanov D.G.3, Mamkin V.V.3, Avilov V.K.3, Trusova S.N.3, Kurbatova J.A.3
-
Мекемелер:
- Weizmann Institute of science
- Institute of forest science of Russian academy of sciences
- A.N. Severtsov Institute of Ecology and Evolution of Russian academy of sciences
- Шығарылым: Том 16, № 3 (2025)
- Беттер: 99-111
- Бөлім: Experimental works
- URL: https://journal-vniispk.ru/2218-4422/article/view/354761
- DOI: https://doi.org/10.18822/edgcc685717
- ID: 354761
Дәйексөз келтіру
Толық мәтін
Аннотация
Timber harvesting is currently one of the main reasons for the alteration of the natural carbon cycle in forest ecosystems. The evaluation of the related changes in CO2 fluxes can be complicated by the heterogeneity of vegetation in naturally regrowing clear-cut areas. This study presents the results of experimental measurements of CO2 fluxes at a clear-cut site in the southwest of the Valdai Upland (European Russia) with herbaceous vegetation and patchy aspen regeneration surrounded by spruce-birch-aspen forest. The measurements of CO2 flux from soil with herbaceous vegetation were made by the static chamber method. Estimates of total primary production, balance, and CO2 emissions from undisturbed soils were obtained. The parallel measurements were carried out in various plant communities of the clear-cut area, as well as in a forest stand adjacent to it and similar to the cut one. It is shown that CO2 emission in the clear-cut was significantly (p = 0.001) higher than in the adjacent forest. For instance, mean daytime midsummer soil CO2 efflux was 8.3 and 10.7 µmol × m-2 × s-1in the forest and clear-cut area, respectively. During three years of observation soil CO2 efflux in the clear-cut increased from year to year from 6.9 to 12.3 µmol × m-2 × s-1. The emission fluxes in the clear-cut site are statistically significantly higher in areas with meadow vegetation compared to areas overgrown with woody vegetation, with median values in the last year 11.5 and 7.5 µmol × m-2 × s-1, respectively. The assessment of integration fluxes in the clear-cut area using chamber methods of observation must be carried out considering the heterogeneity of the vegetation cover.
Негізгі сөздер
Толық мәтін
##article.viewOnOriginalSite##Авторлар туралы
F. Tatarinov
Weizmann Institute of science
Хат алмасуға жауапты Автор.
Email: fedor.tatarinov@weizmann.ac.il
Израиль, Rehovot
A. Molchanov
Institute of forest science of Russian academy of sciences
Email: fedor.tatarinov@weizmann.ac.il
Ресей, Uspenskoye
D. Ivanov
A.N. Severtsov Institute of Ecology and Evolution of Russian academy of sciences
Email: fedor.tatarinov@weizmann.ac.il
Ресей, Moscow
V. Mamkin
A.N. Severtsov Institute of Ecology and Evolution of Russian academy of sciences
Email: fedor.tatarinov@weizmann.ac.il
Ресей, Moscow
V. Avilov
A.N. Severtsov Institute of Ecology and Evolution of Russian academy of sciences
Email: fedor.tatarinov@weizmann.ac.il
Ресей, Moscow
S. Trusova
A.N. Severtsov Institute of Ecology and Evolution of Russian academy of sciences
Email: fedor.tatarinov@weizmann.ac.il
Ресей, Moscow
J. Kurbatova
A.N. Severtsov Institute of Ecology and Evolution of Russian academy of sciences
Email: fedor.tatarinov@weizmann.ac.il
Ресей, Moscow
Әдебиет тізімі
- Amiro B.D., Barr A.G., Barr J.G., Black T.A., Bracho R., Brown M., Chen J., Clark K.L., Davis K.J., Desai A.R., Dore S., Engel V., Fuentes J.D., Goldstein A.H., Goulden M.L., Kolb T.E., Lavigne M., Law B.E., Margolis H.A., Martin T., McCaughey J.H., Misson L., Montes‐Helu M., Noormets A., Randerson J.T., Starr G., Xiao J. 2010. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. Journal of Geophysical Research, 115: G00K02. doi: 10.1029/2010JG001390
- Aubinet M., Grelle A., Ibrom A., Rannik Ü., Moncrieff J., Foken T., Kowalski A.S., Martin P.H., Berbigier P., Bernhofer Ch., Clement R., Elbers J., Granier A., Grünwald T., Morgenstern K., Pilegaard K., Rebmann C., Snijders W., Valentini R., Vesala T. 1999. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Advances in Ecological Research, 30: 113-175. doi: 10.1016/S0065-2504(08)60018-5
- Baldocchi D. 2014. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere - the state and future of the eddy covariance method. Global Change Biology, 20(12): 3600-3609. doi: 10.1111/gcb.12649
- Bjornlund L. 2010. Deforestation. San Diego: Reference Point Press. 96 p.
- Burba G. 2013. Eddy covariance method for scientific, industrial, agricultural and regulatory applications: A field book on measuring ecosystem gas exchange and areal emission rates. Lincoln: LI-Cor Biosciences. 331 p.
- Fiedler, Jan; Fuß, Roland; Glatzel, Stephan; Hagemann, Ulrike; Huth, Vytas; Jordan, Sabine; Jurasinski, Gerald; Kutzbach, Lars; Maier, Martin; Schäfer, Klaus; Weber, Tobias; Weymann, Daniel. 2022. Best practice guideline measurement of carbon dioxide, methane and nitrous oxide fluxes between soil-vegetation-systems and the atmosphere using non-steady state chambers., Arbeitsgruppe Bodengase, Deutsche Bodenkundliche Gesellschaft, 70 p., doi: 10.23689/fidgeo-5422
- Giasson M.A., Coursolle C., Margolis H.A. 2006. Ecosystem-level CO2 fluxes from a boreal cutover in eastern Canada before and after scarification. Agricultural and Forest Meteorology, 140(1-4): 23-40. doi: 10.1016/j.agrformet.2006.08.001
- Humphreys E.R., Black T.A., Morgenstern K., Cai T., Drewitt G.B., Nesic Z., Trofymow J.A. 2006. Carbon dioxide fluxes in coastal Douglas-fir stands at different stages of development after clearcut harvesting. Agricultural and Forest Meteorology, 140(1-4): 6-22. doi: 10.1016/j.agrformet.2006.03.018
- Ivanov D.G., Avilov V.K., Kurbatova Y.A. 2017. CO2 fluxes at south taiga bog in the European part of Russia in summer. Contemporary Problems of Ecology, 10(2): 97-104. doi: 10.1134/S1995425517020056
- Ivleva T.Yu., Leonova N.B. 2019. Spatial-functional heterogeneity of post-cutting communities in the Central Forest State Biosphere Reserve. Ecosystems: Ecology and Dynamics, 3(4): 24-52. DOI: 0.24411/ 2542-2006-2019-10045
- Карпов В.Г., Шапошников Е.С. 1983. Еловые леса территории // Факторы регуляции экосистем еловых лесов / Под ред. В.Г. Карпова. Л.: Наука. С. 7-34.
- Keenan R.J., Kimmins J.P. 1993. The ecological effects of clear-cutting. Environmental Reviews, 1(2): 121-144. doi: 10.1139/a93-010
- Kurbatova J., Li C., Varlagin A., Xiao X., Vygodskaya N. 2008. Modeling carbon dynamics in two adjacent spruce forests with different soil conditions in Russia. Biogeosciences, 5: 969-980. doi: 10.5194/bg-5-969-2008
- Кузнецов М.А. 2017 Эмиссия СО2 с поверхности почвы вырубок ельников с учетом условий технической нагрузки (пасека, волок) // Актуальные проблемы биологии и экологии: материалы докладов: XХIV Всероссийская молодежная научная конференция. Сыктывкар: Коми научный центр Уральского отделения РАН. С. 98-100.
- Lavoie M., Kellman L., Risk D. 2013. The effects of clear-cutting on soil CO2, CH4, and N2O flux, storage and concentration in two Atlantic temperate forests in Nova Scotia, Canada. Forest Ecology and Management, 304: 355-369. doi: 10.1016/j.foreco.2013.05.016
- Lindroth A., Holst J., Heliasz M., Vestin P., Lagergren F., Biermann T., Cai Z., Mölder M. 2018. Effects of low thinning on carbon dioxide fluxes in a mixed hemiboreal forest. Agricultural and Forest Meteorology, 262: 59-70. doi: 10.1016/j.agrformet.2018.06.021
- Lytle D.E., Cronan C.S. 1998. Comparative soil CO₂ evolution, litter decay, and root dynamics in clearcut and uncut spruce-fir forest. Forest Ecology and Management, 103(2-3): 121-128. doi: 10.1016/S0378-1127(97)00182-5
- Machimura T., Kobayashi Y., Hirano T., Lopez L., Fukuda M., Fedorov A.N. 2005. Change of carbon dioxide budget during three years after deforestation in eastern Siberian larch forest. Journal of Agricultural Meteorology, 60(5): 653-656. doi: 10.2480/agrmet.653
- Mamkin V.V., Kurbatova J.A., Avilov V.V., Ivanov D.G., Kuricheva O.A., Varlagin A.V., Yaseneva I.A., Olchev A.V. 2019a. Energy and CO2 exchange in an undisturbed spruce forest and clear-cut in the southern taiga. Agricultural and Forest Meteorology, 265: 252-268. doi: 10.1016/j.agrformet.2018.11.018
- Mamkin V.V., Mukhartova Y.V., Diachenko M.S., Kurbatova J.A. 2019b. Three-year variability of energy and carbon dioxide fluxes at clear-cut forest site in the European southern taiga. Geography, Environment, Sustainability, 12(2): 197-212. doi: 10.24057/2071-9388-2019-13
- Медведева М.В., Мошкина Е.В., Геникова Н.В., Карпечко А.Ю., Туюнен А.В., Мамай А.В., Дубровина И.А., Сидорова В.А., Толстогузов О.В., Кулакова Л.М. 2022. Биологическая активность почвы в условиях изменения режима землепользования в Нечерноземной зоне России // Плодородие. №3. С. 71-76. doi: 10.25680/S19948603.2022.126.19
- Molchanov A.G., Kurbatova Y.A., Olchev A.V. 2017. Effect of clear-cutting on soil CO2 emission. Biology Bulletin of the Russian Academy of Sciences, 44: 218-223. doi: 10.1134/S1062359016060121
- Молчанов А.Г., Татаринов Ф.А. 2017. Эмиссия CO₂ с поверхности почвы и стволов деревьев в еловых и сосновых лесах // Материалы Всероссийской научной конференции, посвящённой 85-летию Центрально‑Лесного государственного природного биосферного заповедника. пос. Заповедный, Тверская обл. с 374-380.
- Молчанов А.Г. 2020. Зависимость дыхания стволов дуба разных классов роста от условий окружающей среды // Лесоведение. № 4. C. 367–376.) doi: 10.31857/S0024114820040087
- Петров В.В. 1985. Жизнь леса и человека. Москва: Наука. 132 с.
- Phillips C.L., McFarlane K.J., Risk D., Desai A.R. 2013. Biological and physical influences on soil 14CO2 seasonal dynamics in a temperate hardwood forest. Biogeosciences, 10: 7999-8012. doi: 10.5194/bg-10-7999-2013
- Priestley C.H.B., Taylor R.J. 1971. On the assessment of surface heat flux and evaporation using large-scale parameter. Monthly Weather Review, 100(2): 81-92.
- Пугачевский А.В. 1992. Физико-географические условия и растительность территории // Еловые ценопопуляции: структура, динамика, факторы регуляции / Под ред. А.В. Пугачевского. Минск: Наука и техника. С. 9–13.
- Pumpanen J., Westman C.J., Ilvesniemi H. 2004. Soil CO2 efflux from a podzolic forest soil before and after forest clearcutting and site preparation. Boreal Environment Research, 9(3): 199-212.
- Qubaja R., Tatarinov F., Rotenberg E., Yakir D. 2020. Partitioning of canopy and soil CO2 fluxes in a pine forest at the dry timberline. Biogeosciences, 17: 699-714. doi: 10.5194/bg-2019-291
- Rayment M.B., Jarvis P.G. 1997. An improved open chamber in the field. Journal of Geophysical Research, 102: 28779-28784.
- Šantrůčková H., Kaštovská E., Kozlov D., Kurbatova J., Livečková M., Shibistova O., Tatarinov F., Lloyd J. 2010. Vertical and horizontal variation of carbon pools and fluxes in soil profile of wet southern taiga in European Russia. Boreal Environment Research, 15: 357-369.
- Швиденко А.З., Щепаченко Д.Г., Нильссон С. 2008. Таблицы и модели хода роста и продуктивности насаждений основных лесообразующих пород Северной Евразии (нормативно-справочные материалы. М.: Министерство природных ресурсов Российской Федерации. 886 с.
- Татаринов Ф.А., Молчанов А.Г., Ольчев А.В. 2009. Оценка и минимизация ошибок при измерении дыхания почвы по открытой схеме // Известия Самарского научного центра РАН. №11(1-7). С. 1592-1595.
- Vestin P., Mölder M., Kljun N., Cai Z., Hasan A., Holst J., Klemedtsson L., Lindroth A. 2020. Impacts of clear-cutting of a boreal forest on carbon dioxide, methane and nitrous oxide fluxes. Forests, 11: 961. doi: 10.3390/f11090961
- Williams C.A., Vanderhoof M.K., Khomik M., Ghimire B. 2014. Post‐clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment. Global Change Biology, 20(3): 992-1007.
Қосымша файлдар




