Сепсис у детей: федеральные клинические рекомендации (проект)

Обложка

Цитировать

Полный текст

Аннотация

В статье публикуется проект клинических рекомендаций по сепсису у детей, разработанный специалистами Ассоциации детских анестезиологов-реаниматологов (АДАР) России и утвержденный на 2-м Российском съезде детских анестезиологов-реаниматологов в апреле 2021 г. Предложены и обоснованы дефиниции сепсиса и септического шока у педиатрических пациентов и их критерии. Представлены данные по этиологии и патогенезу, эпидемиологии, клинической картине и диагностике шока. Рекомендации обоснованы на большом клиническом материале интенсивной терапии сепсиса и септического шока у детей. В работе приведены данные о реабилитации, профилактике и организации медицинской службы при сепсисе у детей. Редакция журнала принимает все замечания и добавления к данному проекту для передачи разработчикам.

Об авторах

Андрей Устинович Лекманов

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Автор, ответственный за переписку.
Email: aulek@rambler.ru

д-р мед. наук, профессор

Россия, 117997, Москва, ул. Островитянова, дом 1

Петр Иванович Миронов

Башкирский государственный медицинский университет

Email: mironovpi@mail.ru
ORCID iD: 0000-0002-9016-9461
SPIN-код: 5617-6616

д-р мед. наук

Россия, Уфа

Юрий Станиславович Александрович

Санкт-Петербургский государственный педиатрический медицинский университет

Email: jalex1963@mail.ru
ORCID iD: 0000-0002-2131-4813
SPIN-код: 2225-1630

д-р мед. наук

Россия, Санкт-Петербург

Дмитрий Кириллович Азовский

Клиническая больница № 1 АО «Группа Компаний «Медси»

Email: azovskii.dk@medsigroup.ru
ORCID iD: 0000-0003-2352-0909
SPIN-код: 3100-6771

д-р мед. наук

Россия, Москва

Дмитрий Александрович Попов

Национальный медицинский исследовательский центр сердечно-сосудистой хирургии им. А.Н. Бакулева; Российская медицинская академия непрерывного профессионального образования

Email: da_popov@inbox.ru
ORCID iD: 0000-0003-1473-1982
SPIN-код: 6694-6714

д-р мед. наук

Россия, Москва; Москва

Константин Викторович Пшениснов

Санкт-Петербургский государственный педиатрический медицинский университет

Email: Psh_K@mail.ru
ORCID iD: 0000-0003-1113-5296
SPIN-код: 8423-4294

канд. мед. наук

Россия, Санкт-Петербург

Александр Львович Музуров

Национальный медицинский исследовательский центр сердечно-сосудистой хирургии им. А.Н. Бакулева; Российская медицинская академия непрерывного профессионального образования

Email: al_muz@mail.ru
ORCID iD: 0000-0003-4131-9440
SPIN-код: 8489-9991

канд. мед. наук

Россия, Москва; Москва

Елена Александровна Дегтярева

Российский университет дружбы народов

Email: dgp48@yandex.ru
ORCID iD: 0000-0002-3219-2145
SPIN-код: 3606-5570

доктор мед. наук, профессор, заслуженный врач Российской Федерации

Россия, Москва

Список литературы

  1. Lekmanov AU, Mironov PI. Pediatric sepsis — time to reach agreement. Russian Bulletin of perinatology and pediatrics. 2020; 65(3):131–137. (In Russ.) doi: 10.21508/1027-4065-2020-65-3-131-137
  2. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101(6):1644–1655. doi: 10.1378/chest.101.6.1644
  3. Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6(1):2–8. doi: 10.1097/01.PCC.0000149131.72248.E6
  4. Weiss SL, Fitzgerald JC, Pappachan J, et al. Sepsis Prevalence, Outcomes, and Therapies (SPROUT) Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2015;191(10):1147–115. doi: 10.1164/rccm.201412-2323OC
  5. de Souza DC, Machado FR. Epidemiology of Pediatric Septic Shock. J Pediatr Intensive Care. 2019;8(1):3–10. doi: 10.1055/s-0038-1676634
  6. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287
  7. Matics TJ, Sanchez-Pinto LN. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the Sepsis-3 definitions in critically ill children. JAMA Pediatr. 2017;171(10):e172352. doi: 10.1001/jamapediatrics.2017.2352
  8. Schlapbach LJ, Straney L, Bellomo R, et al. Prognostic accuracy of age-adapted SOFA, SIRS, PELOD-2, and qSOFA for in-hospital mortality among children with suspected infection admitted to the intensive care unit. Int Care Med. 2018;44:179–188. doi: 10.1007/s00134-017-5021-8
  9. Davis AL, Carcillo JA, Aneja RK, et al. American College of Critical Care Medicine Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit Care Med. 2017;45(9):1061–1093. doi: 10.1097/CCM.00do00000000002425
  10. Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. The Lancet. 2020;396:200–211. doi: 10.1016/S0140-6736(19)32989-7
  11. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589–1596. doi: 10.1097/01.CCM.0000217961.75225.E9
  12. Agyeman PKA, Schlapbach LJ, Giannoni E, et al. Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study. Lancet Child Adolesc Health. 2017;1(2):124–133. doi: 10.1016/S2352-4642(17)30010-X
  13. Martischang R, Pires D, Masson-Roy S, et al. Promoting and sustaining a historical and global effort to prevent sepsis: the 2018 World Health Organization SAVE LIVES, Clean Your Hands campaign. Crit Care. 2018;22:7–9. doi: 10.1186/s13054-018-2011-3
  14. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348(2):138–150. doi: 10.1056/NEJMra021333
  15. Legrand M, De Backer D, Dépret F, Ait-Oufella H. Recruiting the microcirculation in septic shock. Ann Intensive Care. 2019;9:102. doi: 10.1186/s13613-019-0577-9
  16. Sinert RH. Fast Five Quiz: Refresh Your Knowledge on Key Aspects of Sepsis. Medscape. 2018;172:312–314
  17. Schlapbach LJ, Kissoon N. Defining pediatric sepsis. JAMA Pediatr. 2018;172(4):312–314. doi: 10.1001/jamapediatrics.2017.5208
  18. Balamuth F, Weiss SL, Neuman MI, et al. Pediatric severe sepsis in U.S. children’s hospitals. Pediatr Crit Care Med. 2014;15(9):798–805. doi: 10.1097/PCC.0000000000000225
  19. Boeddha N, Schlapbach N, Driessen G, et al. Mortality and morbidity in community-acquired sepsis in European pediatric intensive care units: a prospective cohort study from the European Childhood Life-threatening Infectious Disease Study (EUCLIDS). Crit Care. 2018;22:143. doi: 10.1186/s13054-018-2052-7
  20. Weiss SL, Peters MJ, Alhazzani W, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020;46(1):10–67. doi: 10.1007/s00134-019-05878-6
  21. Killien EY, Farris RWD, Watson RS, et al. Health-Related Quality of Life Among Survivors of Pediatric Sepsis. Pediatr Crit Care Med. 2019;20(6):501–509. doi: 10.1097/PCC.0000000000001886
  22. Carlton EF, Barbaro RP, Iwashyna TJ, Prescott HC. Cost of Pediatric Severe Sepsis Hospitalizations. JAMA Pediatr. 2019;173(10):986–987. doi: 10.1001/jamapediatrics.2019.2570
  23. Tidswell R, Inada-Kim M, Singer M. Sepsis: the importance of an accurate final diagnosis. Lancet Respir Med. 2021;9(1):17–18. doi: 10.1016/S2213-2600(20)30520-8
  24. WHO releases new International Classification of Diseases (ICD 11). [Internet]. Available from: https://www.who.int/news/item/18-06-2018-who-releases-new-international-classification-of-diseases-(icd-11).
  25. Gel’fand BR, editor. Sepsis: klassifikacija, kliniko-diagnosticheskaja koncepcija i lechenie. 4-e izd., dop. i pererab. Moscow: Medicinskoe informacionnoe agentstvo, 2017. 408 p. (In Russ.)
  26. Evans IVR, Phillips GS, Alpern ER, et al. Association between the New York sepsis care mandate and in-hospital mortality for pediatric sepsis. JAMA. 2018;320(4):358–367. doi: 10.1001/jama.2018.9071
  27. Paul R, Melendez E, Stack A, et al. Improving adherence to PALS septic shock guidelines. Pediatrics. 2014;133(5):e1358–e1366. doi: 10.1542/peds.2013-3871
  28. Lane RD, Funai T, Reeder R, et al. High reliability pediatric septic shock quality improvement initiative and decreasing mortality. Pediatrics. 2016;138(4):e20154153. doi: 10.1542/peds.2015-4153
  29. Gonsalves WI, Cornish N, Moore M, et al. Effects of volume and site of blood draw on blood culture results. J Clin Microbiol. 2009;47:3482–3485. doi: 10.1128/JCM.02107-08
  30. Freedman SB, Roosevelt GE. Utility of anaerobic blood cultures in a pediatric emergency department. Pediatr Emerg Care. 2004;20(7):433–436. doi: 10.1097/01.pec.0000132215.57976.99
  31. Popov DA, Nadtochey EA, Vostrikova TYu, Ovseenko ST. Accelerated Techniques of Pathogen Identification from Positive Blood Cultures by MALDI-TOF Mass Spectrometry. Clinical Microbiology and Antimicrobial Chemotherapy. 2016;18(4):296–307. (In Russ.)
  32. Schlapbach LJ, MacLaren G, Festa M, et al. Australian & New Zealand Intensive Care Society (ANZICS) Centre for Outcomes & Resource Evaluation (CORE) and Australian & New Zealand Intensive Care Society (ANZICS) Paediatric Study Group: Prediction of pediatric sepsis mortality within 1h of intensive care admission. Intensive Care Med. 2017;43:1085–1096. doi: 10.1007/s00134-017-4701-8
  33. Schlapbach LJ, MacLaren G, Straney L. Venous vs arterial lactate and 30-day mortality in pediatric sepsis. JAMA Pediatr. 2017;171(8):813. doi: 10.1001/jamapediatrics.2017.1598
  34. Scott HF, Brou L, Deakyne SJ, et al. Association between early lactate levels and 30-day mortality in clinically suspected sepsis in children. JAMA Pediatr. 2017;171(3):249–255. doi: 10.1001/jamapediatrics.2016.3681
  35. Nguyen HB, Rivers EP, Knoblich BP, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004;32(8):1637–1642. doi: 10.1097/01.CCM.0000132904.35713.A7
  36. Morin L, Ray S, Wilson C, et al. Refractory septic shock in children: a European Society of Paediatric and Neonatal Intensive Care definition. ESPNIC Refractory Septic Shock Definition Taskforce the Infection Systemic Inflammation Sepsis section of ESPNIC. Intensive Care Med. 2016;42(12):1948–1957. doi: 10.1007/s00134-016-4574-2
  37. Gorgis N, Asselin JM, Fontana C, et al. Evaluation of the association of early elevated lactate with outcomes in children with severe sepsis or septic shock. Pediatr Emerg Care. 2019;35:661–665. doi: 10.1097/PEC.0000000000001021
  38. Bai Z, Zhu X, Li M, et al. Effectiveness of predicting in-hospital mortality in critically ill children by assessing blood lactate levels at admission. BMC Pediatr. 2014;14:83. doi: 10.1186/1471-2431-14-83
  39. Scott HF, Brou L, Deakyne SJ, et al. Lactate Clearance and Normalization and Prolonged Organ Dysfunction in Pediatric Sepsis. J Pediatr. 2016;170:149–55.e1-4. doi: 10.1016/j.jpeds.2015.11.071 J Pediatr
  40. Bakker J, Maarten WN, Jansen TC. Clinical use of lactate monitoring in critically ill patients. Annals of Intensive Care. 2013;3:12. doi: 10.1186/2110-5820-3-12
  41. Wong HR, Cvijanovich NZ, Anas N, et al. Pediatric sepsis biomarker risk model-II: redefining the pediatric sepsis biomarker risk model with septic shock phenotype. Crit Care Med. 2016;44(11):2010–2017. doi: 10.1097/CCM.0000000000001852
  42. Wong HR, Weiss SL, Giuliano Jr JS, et al. Testing the Prognostic Accuracy of the Updated Pediatric Sepsis Biomarker Risk Model. PLoS ONE. 2016;9(1):e86242. doi: 10.1371/journal.pone.0086242
  43. Wong HR, Cvijanovich NZ, Anas N, et al. Improved risk stratification in pediatric septic shock using both protein and mRNA biomarkers. PERSEVERE-XP. Am J Respir Crit Care Med. 2017;196(4):494–501. doi: 10.1164/rccm.201701-0066OC
  44. Wong HR, Caldwell JT, Cvijanovich NZ, et al. Prospective clinical testing and experimental validation of the Pediatric Sepsis Biomarker Risk Model. Sci Transl Med. 2019;11(518):eaax9000. doi: 10.1126/scitranslmed.aax9000
  45. Herberg JA, Kaforou M, Wright VJ, et al. Diagnostic accuracy of a 2-transcript host RNA signature for discriminating bacterial vs viral infection in febrile children. JAMA. 2016;316(8):835–845.
  46. Raymond SL, Lopez MC, Baker HV, et al. Unique transcriptomic response to sepsis is observed among patients of different age groups. PLoS One. 2017;12(9):e0184159. doi: 10.1371/journal.pone.0184159
  47. Balamuth F, Alpern ER, Kan M, et al. Gene expression profiles in children with suspected sepsis. Ann Emerg Med. 2020;75(6):744–754. doi: 10.1016/j.annemergmed.2019.09.020
  48. Lamping F, Jack T, Rubsamen N, et al. Development and validation of a diagnostic model for early differentiation of sepsis and non-infectious SIRS in critically ill children — a data-driven approach using machine learning algorithms. BMC Pediatr. 2018;18(1):112. doi: 10.1186/s12887-018-1082-2
  49. Han YY, Carcillo JA, Dragotta MA, et al. Early reversal of pediatric-neonatal septic shock by community physicians is associated with improved outcome. Pediatrics. 2003;112(4):793–799. doi: 10.1542/peds.112.4.793
  50. Paul R, Neuman MI, Monuteaux MC, et al. Adherence to PALS sepsis guidelines and hospital length of stay. Pediatrics. 2012;130(2):e273–e280. doi: 10.1542/peds.2012-0094
  51. Machado FR, Ferreira EM, Schippers P, et al. Implementation of sepsis bundles in public hospitals in Brazil: a prospective study with heterogeneous results. Crit Care. 2017;21:268. doi: 10.1186/s13054-017-1858-z
  52. Balamuth F, Weiss SL, Fitzgerald JC, et al. Protocolized treatment is associated with decreased organ dysfunction in pediatric severe sepsis. Pediatr Crit Care Med. 2016;17(9):817–822. doi: 10.1097/PCC.0000000000000858
  53. Cruz AT, Perry AM, Williams EA, et al. Implementation of goal-directed therapy for children with suspected sepsis in the emergency department. Pediatrics. 2011;127(3):e758–e766. doi: 10.1542/peds.2010-2895
  54. Kortz TB, Axelrod DM, Chisti MJ, et al. Clinical outcomes and mortality before and after implementation of a pediatric sepsis protocol in a limited resource setting: A retrospective cohort study in Bangladesh. PLoS One. 2017;12:e0181160. doi: 10.1371/journal.pone.0181160
  55. Long E, Babl FE, Angley E, et al. A prospective quality improvement study in the emergency department targeting paediatric sepsis. Arch Dis Child. 2016;101(10):945–950. doi: 10.1136/archdischild-2015-310234
  56. Workman JK, Ames SG, Reeder RW, et al. Treatment of pediatric septic shock with the surviving sepsis campaign guidelines and PICU patient outcomes. Pediatr Crit Care Med. 2016;17(10):e451–e458. doi: 10.1097/PCC.0000000000000906
  57. Schlapbach LJ, Weiss SL, Wolf J. Reducing collateral damage from mandates for time to antibiotics in pediatric sepsis-primum non nocere. JAMA Pediatr. 2019;173(5):409–410. doi: 10.1001/jamapediatrics.2019.0174
  58. Tuuri RE, Gehrig MG, Busch CE, et al. “Beat the Shock Clock”: An interprofessional team improves pediatric septic shock care. Clin Pediatr (Phila). 2016;55:626–638. doi: 10.1177/0009922815601984
  59. Weiss SL, Fitzgerald JC, Balamuth F, et al. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit Care Med. 2014;42(11):2409–2417. doi: 10.1097/CCM.0000000000000509
  60. Sukhorukova MV, Edelstein MV, Skleenova EYu, et al. Antimicrobial resistance of nosocomial Enterobacterales isolates in Russia: results of multicenter epidemiological study “MARATHON 2015–2016”. Clinical Microbiology and Antimicrobial Chemotherapy. 2019;21(2):147–159. (In Russ.)
  61. Beloborodov VB, Brusina EB, Kozlov RS, et al. Programma SKAT (strategija kontrolja antimikrobnoj terapii) pri okazanii stacionarnoj medicinskoj pomoshhi. Rossijskie klinicheskie rekomendacii. Moscow: Pero Publ., 2018. 156 p. (In Russ.)
  62. Beloborodov VB, Gusarov VG, Dekhnich AV, et al. Guidelines of the Association of Anesthesiologists-Intensivists, the Interregional Non-Governmental Organization Alliance of Clinical Chemotherapists and Microbiologists, the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC), and NGO Russian Sepsis Forum Diagnostics and antimicrobial therapy of the infections caused by multiresistant microorganisms. Messenger of anesthesiology and resuscitation. 2020;17(1):52–83. (In Russ.) doi: 10.21292/2078-5658-2020-16-1-52-83
  63. Godbout EJ, Pakyz AL, Markley JD, et al. Pediatric antimicrobial stewardship: State of the art. Curr Infect Dis Rep. 2018;20:39. doi: 10.1007/s11908-018-0644-7
  64. Weiss CH, Persell SD, Wunderink RG, et al. Empiric antibiotic, mechanical ventilation, and central venous catheter duration as potential factors mediating the effect of a checklist prompting intervention on mortality: An exploratory analysis. BMC Health Serv Res. 2012;12:198. doi: 10.1186/1472-6963-12-198
  65. Weiss CH, Moazed F, McEvoy CA, et al. Prompting physicians to address a daily checklist and process of care and clinical outcomes: A single-site study. Am J Respir Crit Care Med. 2011;184(6):680–686. doi: 10.1164/rccm.201101-0037OC
  66. Public Health England: Start Smart - Then Focus. 2015. United Kingdom, Public Health England [Internet]. [Cited 15 March 2021] Available from: https://www.gov.uk/government/publications/antimicrobial-stewardship-start-smart-then-focus#history.
  67. Baddour LM, Wilson WR, Bayer AS, et al. American Heart Association Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young, Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Stroke Council: Infective endocarditis in adults: Diagnosis, antimicrobial therapy, and management of complications: A scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132(15):1435–1486. doi: 10.1161/CIR.0000000000000296
  68. Chotiprasitsakul D, Han JH, Cosgrove SE, et al. Antibacterial Resistance Leadership Group: Comparing the outcomes of adults with Enterobacteriaceae bacteremia receiving short-course versus prolonged-course antibiotic therapy in a multicenter, propensity score-matched cohort. Clin Infect Dis. 2018;66(2):172–177. doi: 10.1093/cid/cix767
  69. Chong YP, Moon SM, Bang KM, et al. Treatment duration for uncomplicated Staphylococcus aureus bacteremia to prevent relapse: Analysis of a prospective observational cohort study. Antimicrob Agents Chemother. 2013;57:1150–1156. doi: 10.1128/AAC.01021-12
  70. Lehrnbecher T, Robinson P, Fisher B, et al. Guideline for the management of fever and neutropenia in children with cancer and hematopoietic stem-cell transplantation recipients: 2017 update. J Clin Oncol. 2017;35(18):2082–2094. doi: 10.1200/JCO.2016.71.7017
  71. Meisner M. Procalcitonin (PCT) A new, innovative infection parameter. Biochemical and clinical aspects. Stuttgart: Georg Thieme Verlag, 2000. 196 p.
  72. Schuetz P, Briel M, Christ-Crain M, et al. Procalcitonin to guide initiation and duration of antibiotic treatment in acute respiratory infections: an individual patient data meta-analysis. Clin Infect Dis. 2012;55(5):651–662. doi: 10.1093/cid/cis464
  73. Prkno A, Wacker C, Brunkhorst FM, Schlattmann P. Procalcitonin guided therapy in intensive care unit patients with severe sepsis and septic shock - a systematic review and meta-analysis. Crit Care. 2013;17(6):R291. doi: 10.1186/cc13157
  74. Downes KJ, Fitzgerald JC, Schriver E, et al. Implementation of a pragmatic biomarker-driven algorithm to guide antibiotic use in the pediatric intensive care unit: the Optimizing Antibiotic Strategies in Sepsis (OASIS) II Study. J Pediatr Infect Dis Soc. 2020;9(1):36–43. doi: 10.1093/jpids/piy113
  75. Schuetz P, Chiappa V, Briel M, Greenwald JL. Procalcitonin algorithms for antibiotic therapy decisions: a systematic review of randomized controlled trials and recommendations for clinical algorithms. Arch Intern Med. 2011;171(15):1322–1331. doi: 10.1001/archinternmed.2011.318
  76. Petel D, Winters N, Gore GC, et al. Use of C-reactive protein to tailor antibiotic use: a systematic review and meta-analysis. BMJ Open. 2018;8(12):e022133. doi: 10.1136/bmjopen-2018-022133
  77. Hagedoorn NN, Borensztajn D, Nijman RG, et al. Development and validation of a prediction model for invasive bacterial infections in febrile children at European Emergency Departments: MOFICHE, a prospective observational study. Arch Dis Child. 2020:archdischild-2020-319794. doi: 10.1136/archdischild-2020-319794
  78. Lagunes L, Encina B, Ramirez-Estrada S. Current understanding in source control management in septic shock patients: A review. Ann Transl Med. 2016:4(17):330. doi: 10.21037/atm.2016.09.02
  79. Rhodes A, Evans LE, Alhazzani W, et al: Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–377. doi: 10.1007/s00134-017-4683-6
  80. Schlapbach LJ, Straney L, Alexander J, et al. ANZICS Paediatric Study Group: Mortality related to invasive infections, sepsis, and septic shock in critically ill children in Australia and New Zealand, 2002-13: A multicentre retrospective cohort study. Lancet Infect Dis. 2015;15:46–54. doi: 10.1016/S1473-3099(14)71003-5
  81. Fustes-Morales A, Gutierrez-Castrellon P, Duran-Mckinster C, et al. Necrotizing fasciitis: Report of 39 pediatric cases. Arch Dermatol. 2002;138(7):893–899. doi: 10.1001/archderm.138.7.893
  82. Endorf FW, Garrison MM, Klein MB, et al: Characteristics, therapies, and outcome of children with necrotizing soft tissue infections. Pediatr Infect Dis J. 2012;31(3):221–223. doi: 10.1097/INF.0b013e3182456f02
  83. Vasudevan C, Oddie SJ, McGuire W. Early removal versus expectant management of central venous catheters in neonates with bloodstream infection. Cochrane Database Syst Rev. 2016;4(4):CD008436. doi: 10.1002/14651858
  84. Rodriguez D, Park BJ, Almirante B, et al. Barcelona Candidemia Project Study Group: Impact of early central venous catheter removal on outcome in patients with candidaemia. Clin Microbiol Infect. 2007;13(8):788–793. doi: 10.1111/j.1469-0691.2007.01758.x
  85. Santhanam I, Sangareddi S, Venkataraman S, et al. A prospective randomized controlled study of two fluid regimens in the initial management of septic shock in the emergency department. Pediatr Emerg Care. 2008;24(10):647–655. doi: 10.1097/PEC.0b013e31818844cf
  86. Inwald DP, Canter R, Woolfall K, et al. Restricted fluid bolus volume in early septic shock: Results of the Fluids in Shock pilot trial. Arch Dis Child. 2019;104(5):426–431. doi: 10.1136/archdischild-2018-314924
  87. Sankar J, Javed MD, Sankar M, et al. Fluid bolus over 15-20 versus 5-10 minutes each in the first hour of resuscitation in children with septic shock: A randomized controlled trial. Pediatr Crit Care Med. 2017;18(10):e435–e445. doi: 10.1097/PCC.0000000000001269
  88. Arikan AAA, Zappitelli M, Goldstein SL, et al. Fluid overload is associated with impaired oxygenation and morbidity in critically ill children. Pediatr Crit Care Med. 2012;13(3):253–258. doi: 10.1097/PCC.0b013e31822882a3
  89. Alobaidi R, Morgan C, Basu RK, et al. Association between fluid balance and outcomes in critically ill children: A systematic review and meta-analysis. JAMA Pediatr. 2018;172(3):257–268. doi: 10.1001/jamapediatrics.2017.4540
  90. Samransamruajkit R, Uppala R, Pongsanon K, et al. Clinical outcomes after utilizing surviving sepsis campaign in children with septic shock and prognostic value of initial plasma NT-proBNP. Indian J Crit Care Med. 2014;18(2):70–76. doi: 10.4103/0972-5229.126075
  91. Chen J, Li X, Bai Z, et al. Association of fluid accumulation with clinical outcomes in critically ill children with severe sepsis. PLoS One. 2016;11(7):1–17. doi: 10.1371/journal.pone.0160093
  92. Fung JST, Akech S, Kissoon N, et al. Determining predictors of sepsis at triage among children under 5 years of age in resource-limited settings: A modified Delphi process. PLoS One. 2019;14(1):1–14. doi: 10.1371/journal.pone.0211274
  93. Maitland K, Kiguli S, Opoka RO, et al. Mortality after Fluid Bolus in African Children with Severe Infection. N Engl J Med. 2011;364(26):2483–2495. doi: 10.1056/NEJMoa1101549
  94. Weiss SL, Keele L, Balamuth F, et al. Crystalloid Fluid Choice and Clinical Outcomes in Pediatric Sepsis: A Matched Retrospective Cohort Study. J Pediatr Mosby Inc. 2017;182:304–310.e10. doi: 10.1016/j.jpeds.2016.11.075
  95. Emrath ET, Fortenberry JD, Travers C, et al. Resuscitation with Balanced Fluids Is Associated with Improved Survival in Pediatric Severe Sepsis. Crit Care Med. 2017;45(7):1177–1183. doi: 10.1097/CCM.0000000000002365
  96. Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care Critical Care. 2019;23(1):16. doi: 10.1186/s13054-018-2292-6
  97. Becker BF, Chappell D, Bruegger D, et al. Therapeutic strategies targeting the endothelial glycocalyx: Acute deficits, but great potential. Cardiovasc Res. 2010;87(2):300–310. doi: 10.1093/cvr/cvq137
  98. Hariri G, Joffre J, Deryckere S, et al. Albumin infusion improves endothelial function in septic shock patients: a pilot study. Intensive Care Med. 2018;44(5):669–671. doi: 10.1007/s00134-018-5075-2
  99. Caironi P, Tognoni G, Masson S, et al. Albumin Replacement in Patients with Severe Sepsis or Septic Shock. N Engl J Med. 2014;370(15):1412–1421. doi: 10.1056/NEJMoa1305727
  100. Xu JY, Chen Q-H, Xie J-F, et al. Comparison of the effects of albumin and crystalloid on mortality in adult patients with severe sepsis and septic shock: A meta-analysis of randomized clinical trials. Crit Care. 2014;18(6):1–8. doi: 10.1186/s13054-014-0702-y
  101. Perner A, Haase N, Guttormsen AB, et al. Hydroxyethyl Starch 130/0.42 versus Ringer’s Acetate in Severe Sepsis. N Engl J Med. 2012;367(2):124–134. doi: 10.1056/NEJMoa1204242
  102. Brierley J, Peters MJ. Distinct Hemodynamic Patterns of Septic Shock at Presentation to Pediatric Intensive Care. Pediatrics. 2008;122(4):752–759. doi: 10.1542/peds.2007-1979
  103. Tibby SM, Hatherill M, Marsh MJ, Murdoch IA. Clinicians’ abilities to estimate cardiac index in ventilated children and infants. Arch Dis Child. 1997;77(6):516–518. doi: 10.1136/adc.77.6.516
  104. Egan JR, Festa M, Cole AD, et al. Clinical assessment of cardiac performance in infants and children following cardiac surgery. Intensive Care Med. 2005;31(4):568–573. doi: 10.1007/s00134-005-2569-5
  105. Ranjit S, Aram G, Kissoon N, et al. Multimodal Monitoring for Hemodynamic Categorization and Management of Pediatric Septic Shock. Pediatr Crit Care Med. 2014;15(1):e17–e26. doi: 10.1097/PCC.0b013e3182a5589c
  106. Pollack MM, Fields AI, Ruttimann UE. Distributions of cardiopulmonary variables in pediatric survivors and nonsurvivors of septic shock. Crit Care Med. 1985;13(6):454–459. doi: 10.1097/00003246-198506000-00002
  107. Morin L, Kneyber M, Jansen NGJ, et al. Translational gap in pediatric septic shock management: an ESPNIC perspective. Ann Int Care. 2019;9(1):73. doi: 10.1186/s13613-019-0545-4
  108. Ranjit S, Natraj R, Kandath SK, et al. Early norepinephrine decreases fluid and ventilatory requirements in pediatric vasodilatory septic shock. Indian J Crit Care Med. 2016;20(10):561–569. doi: 10.4103/0972-5229.192036
  109. Permpikul C, Tongyoo S, Viarasilpa T, et al. Early Use of Norepinephrine in Septic Shock Resuscitation (CENSER). A Randomized Trial. Am J Respir Crit Care Med. 2019;199(9):1097–1105. doi: 10.1164/rccm.201806-1034OC
  110. Elbouhy MA, Soliman M, Gaber A, et al. Early Use of Norepinephrine Improves Survival in Septic Shock: Earlier than Early. Arch Med Res. 2019;50(6):325–332. doi: 10.1016/j.arcmed.2019.10.003
  111. Wen L, Xu L. The efficacy of dopamine versus epinephrine for pediatric or neonatal septic shock: A meta-analysis of randomized controlled studies. Ital J Pediatr. 2020;46(1):1–7. doi: 10.1186/s13052-019-0768-x
  112. Russell JA. Vasopressor therapy in critically ill patients with shock. Int Care Med. 2019;45(11):1503–1517. doi: 10.1007/s00134-019-05801-z
  113. De Backer D, Biston P, Devriendt J, et al. Comparison of Dopamine and Norepinephrine in the Treatment of Shock. N Engl J Med. 2010;362(9):779–789. doi: 10.1056/NEJMoa0907118.
  114. Azovsky DK, Lekmanov AU, Pilyutik SF. Usage of selective β1-blocker atenolol in children with a severe burn trauma. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2016;6(3):73–80. (In Russ.)
  115. Herndon DN, Hart DW, Wolf SE, et al. Reversal of Catabolism by Beta-Blockade after Severe Burns. N Engl J Med. 2001;345(17):1223–1229. doi: 10.1056/NEJMoa010342
  116. Walsh BK, Smallwood CD. Pediatric Oxygen Therapy: A Review and Update. Respir Care. 2017;62(6):645–661. doi: 10.4187/respcare.05245
  117. Aubier M, Viires N, Syllie G, et al. Respiratory muscle contribution to lactic acidosis in low cardiac output. Am Rev Respir Dis. 1982;126(4):648–652. doi: 10.1164/arrd.1982.126.4.648
  118. Cheifetz IM. Invasive and noninvasive pediatric mechanical ventilation. Respir Care. 2003;48(4):442–453.
  119. Pham T, Brochard LJ, Slutsky AS. Mechanical ventilation: state of the art. Mayo Clin Proc. 2017;92(9):1382–1400. doi: 10.1016/j.mayocp.2017.05.004
  120. Ghuman AK, Newth CJ, Khemani RG. The association between the end tidal alveolar dead space fraction and mortality in pediatric acute hypoxemic respiratory failure. Pediatr Crit Care Med. 2012;13(1):11–15. doi: 10.1097/PCC.0b013e3182192c42
  121. Khemani RG, Smith L, Lopez-Fernandez YM, et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir Med. 2019;7(2):115–128. doi: 10.1016/S2213-2600(18)30344-8
  122. Jones P, Dauger S, Denjoy I, et al. The effect of atropine on rhythm and conduction disturbances during 322 critical care intubations. Pediatr Crit Care Med. 2013;14(9):e289–e297. doi: 10.1097/PCC.0b013e31828a8624
  123. Jabre P, Avenel A, Combes X, et al. Morbidity related to emergency endotracheal intubation — a substudy of the KETAmine SEDation trial. Resuscitation. 2011;82(5):517–522. doi: 10.1016/j.resuscitation.2011.01.015
  124. Barois J, Tourneux P. Ketamine and atropine decrease pain for preterm newborn tracheal intubation in the delivery room: An observational pilot study. Acta Paediatr. 2013;102(2):e534–e538. doi: 10.1111/apa.12413
  125. Hall RW. Anesthesia and analgesia in the NICU. Clin Perinatol. 2012;39(1):239–254. doi: 10.1016/j.clp.2011.12.013
  126. Nemergut ME, Yaster M, Colby CE. Sedation and analgesia to facilitate mechanical ventilation. Clin Perinatol. 2013;40(3):539–558. doi: 10.1016/j.clp.2013.05.005
  127. Abadesso C, Nunes P, Silvestre C, et al. Non-invasive ventilation in acute respiratory failure in children. Pediatr Rep. 2012;4(2):e16. doi: 10.4081/pr.2012.e16
  128. Piastra M, De Luca D, Pietrini D, et al. Noninvasive pressure support ventilation in immunocompromised children with ARDS: a feasibility study. Intensive Care Med. 2009;35:1420–1427. doi: 10.1007/s00134-009-1558-5
  129. Piastra M, De Luca D, Marzano L, et al. The number of failing organs predicts non-invasive ventilation failure in children with ALI/ARDS. Intensive Care Med. 2011;37:1510–1516. doi: 10.1007/s00134-011-2308-z
  130. Rimensberger PC, Cheifetz IM. Pediatric Acute Lung Injury Consensus Conference Group. Ventilatory support in children with pediatric acute respiratory distress syndrome: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16(1):S51–60. doi: 10.1097/PCC.0000000000000433
  131. Khemani RG, Smith LS, Zimmerman JJ, et al. Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;5(1):S23–40. doi: 10.1097/PCC.0000000000000432
  132. Kneyber MCJ, de Luca D, Calderini E, et al. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC). Intensive Care Med. 2017;43(12):1764–1780. doi: 10.1007/s00134-017-4920-z
  133. Aleksandrovich JS, Pshenisnov KV. Respiratornaja podderzhka pri kriticheskih sostojanijah v pediatrii i neonatologii (rukovodstvo dlja vrachej). M.: GJeOTAR-Media, 2020. 272 p. (In Russ.)
  134. Lebedinskij KM, Mazurok VA, Nefedov AV. Osnovy respiratornoj podderzhki. Saint Petersburg: Chelovek, 2008. 208 p. (In Russ.)
  135. Newth CJ, Rachman B, Patel N, et al. The use of cuffed versus uncuffed endotracheal tubes in pediatric intensive care. J Pediatr. 2004;144(3):333–337. doi: 10.1016/j.jpeds.2003.12.018
  136. Weiss M, Dullenkopf A, Fischer JE, et al. European Paediatric Endotracheal Intubation Study Group: Prospective randomized controlled multi-centre trial of cuffed or uncuffed endotracheal tubes in small children. Br J Anaesth. 2009;103(6):867–873. doi: 10.1093/bja/aep290
  137. Topjian AA, Raymond TT, Atkins D, et al. Part 4: Pediatric Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2020;142(16,2):S469–S523. doi: 10.1161/CIR.0000000000000918
  138. Abdelsalam M, Cheifetz IM. Goal-directed therapy for severely hypoxic patients with acute respiratory distress syndrome: Permissive hypoxemia. Respir Care. 2010;55(11):1483–1490.
  139. Randolph AG. Management of acute lung injury and acute respiratory distress syndrome in children. Crit Care Med. 2009;37(8):2448–2454. doi: 10.1097/CCM.0b013e3181aee5dd
  140. Santini A, Protti A, Langer T, et al. Prone position ameliorates lung elastance and increases functional residual capacity independently from lung recruitment. Int Care Med Exp. 2015;3:55. doi: 10.1186/s40635-015-0055-0
  141. Macrae DJ, Field D, Mercier JC, et al. Inhaled nitric oxide therapy in neonates and children: reaching a European consensus. Intensive Care Med. 2004;30:372–380. doi: 10.1007/s00134-003-2122-3
  142. National Heart, Lung and Blood Institute PETAL Clinical Trials Network, et al. Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome. N Engl J Med. 2019;380(21):1997–2008. doi: 10.1056/NEJMoa1901686
  143. Mikhailov TA, Kuhn EM, Manzi J, et al. Early enteral nutrition is associated with lower mortality in critically ill children. JPEN J Parenter Enteral Nutr. 2014;38(4):459–466. doi: 10.1177/0148607113517903
  144. Prakash V, Parameswaran N, Biswal N. Early versus late enteral feeding in critically ill children: a randomized controlled trial. Int Care Med. 2016;42:481–482. doi: 10.1007/s00134-015-4176-4
  145. Manaf AZ, Kassim N, Hamzaid NH, Razali NH. Delivery of enteral nutrition for critically ill children. Nutr Diet. 2013;70:120–125. doi: 10.1111/1747-0080.12007
  146. Bagci S, Keles E, Girgin F, et al. Early initiated feeding versus early reached target enteral nutrition in critically ill children: an observational study in pediatric intensive care units in Turkey. J Paediatr Child Health. 2018;54:480–486. doi: 10.1111/jpc.13810
  147. Mikhailov TA, Gertz SJ, Kuhn EM, et al. Early enteral nutrition is associated with signifcantly lower hospital charges in critically ill children. JPEN J Parenter Enter Nutr. 2018;42:920–925. doi: 10.1002/jpen.1025
  148. Carpenito KR, Prusinski R, Kirchner K, et al. Results of a feeding protocol in patients undergoing the hybrid procedure. Pediatr Cardiol. 2016;37:852–859. doi: 10.1007/s00246-016-1359-x
  149. Lekmanov AU, Erpuleva JV. Rannee jenteral’noe pitanie pri kriticheskih sostojanijah u detej. Annals of Critical Care. 2012;(3):53–55. (In Russ.)
  150. Mehta NM, Bechard LJ, Zurakowski D, et al. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: a multicenter, prospective, cohort study. Am J Clin Nutr. 2015;102(1):199–206. doi: 10.3945/ajcn.114.104893
  151. Jotterand CC, Laure DJ, Longchamp D, et al. How much protein and energy are needed to equilibrate nitrogen and energy balances in ventilated critically ill children? Clin Nutr. 2016;35(2):60–467. doi: 10.1016/j.clnu.2015.03.015
  152. Wong JJ, Han WM, Sultana R, et al. Nutrition delivery affects outcomes in pediatric acute respiratory distress syndrome. JPEN J Parenter Enteral Nutr. 2017;41(6):1007–1013. doi: 10.1177/0148607116637937
  153. Rajalakshmi I, Arun B. What do we know about optimal nutritional strategies in children with pediatric acute respiratory distress syndrome? Ann Transl Med. 2019;7(19):510–518. doi: 10.21037/atm.2019.08.25
  154. Panchal AK, Manzi J, Connolly S, et al. Safety of enteral feedings in critically ill children receiving vasoactive agents. JPEN J Parenter Enter Nutr. 2016;40(2):236–241. doi: 10.1177/0148607114546533
  155. King W, Petrillo T, Pettignano R. Enteral nutrition and cardiovascular medications in the pediatric intensive care unit. JPEN J Parenter Enteral Nutr. 2004;28(5):334–338. doi: 10.1177/0148607104028005334
  156. López-Herce J, Santiago MJ, Sánchez C, et al. Risk factors for gastrointestinal complications in critically ill children with transpyloric enteral nutrition. Eur J Clin Nutr. 2008;62:395–400. doi: 10.1038/sj.ejcn.1602710
  157. Mehta N.M. Feeding the Gut During Critical Illness — It Is About Time. JPEN J Parenter Enteral Nutr May. 2014;38(4):410–414. doi: 10.1177/0148607114522489
  158. Shmakov AN, Aleksandrovich YuS, Stepanenko SM. Protocol. Nutrition therapy of critically ill children. Anesthesiology-resuscitation. 2017;62(1):14–23. (In Russ.) doi: 10.18821/0201-7563-2017-62-1-14-23
  159. Meyer R, Harrison S, Sargent S, et al. The impact of enteral feeding protocols on nutritional support in critically ill children. J Hum Nutr Diet. 2009;22(5):428–436. doi: 10.1111/j.1365-277X.2009.00994.x
  160. Petrillo-Albarano T, Pettignano R, Asfaw M, et al. Use of a feeding protocol to improve nutritional support through early, aggressive, enteral nutrition in the pediatric intensive care unit. Pediatr Crit Care Med. 2006;7(4):340–344. doi: 10.1097/01.PCC.0000225371.10446.8F
  161. Yoshimura S, Miyazu M, Yoshizawa S, et al. Efficacy of an enteral feeding protocol for providing nutritional support after paediatric cardiac surgery. Anaesth Intensive Care. 2015;43(5):587–593. doi: 10.1177/0310057X1504300506
  162. Hamilton S, McAleer DM, Ariagno K, et al. A stepwise enteral nutrition algorithm for critically ill children helps achieve nutrient delivery goals. Pediatr Crit Care Med. 2014;15(7):583–589. doi: 10.1097/PCC.0000000000000179
  163. López-Herce J, Mencía S, Sánchez C, et al. Postpyloric enteral nutrition in the critically ill child with shock: a prospective observational study. Nutr J. 2008;7:6. doi: 10.1186/1475-2891-7-6
  164. Sonmez DD, Yildiz S. Effect of two different feeding methods on preventing ventilator associated pneumonia in the pediatric intensive care unit (PICU): a randomised controlled study. Aust Crit Care. 2016;29:139–145. doi: 10.1016/j.aucc.2015.11.001
  165. Lekmanov AU, Ryzhov EA, Erpuljova JV, Rossaus PA. The experience of enteral feeding with nasojejunal tube in children in critical state. Anesthesiology-resuscitation. 2012;(1):41–43. (In Russ.)
  166. Meert KL, Daphtary KM, Metheny NA. Gastric vs small-bowel feeding in critically ill children receiving mechanical ventilation: a randomized controlled trial. Chest. 2004;126(3):872–878. doi: 10.1378/chest.126.3.872
  167. Kamat P, Favaloro-Sabatier J, Rogers K, Stockwell JA. Use of methylene blue spectrophotometry to detect subclinical aspiration in enterally fed intubated pediatric patients. Pediatr Crit Care Med. 2008;9(3):299–303. doi: 10.1097/PCC.0b013e318172d500
  168. Mehta NM, Bechard LJ, Zurakowski D, et al. Heyland Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: a multicenter, prospective, cohort study. Am J Clin Nutr. 2015;102(1):199–206.
  169. Fivez T, Kerklaan D, Mesotten D, et al. Early versus late parenteral nutrition in critically ill children. N Engl J Med. 2016;374:1111–1122. doi: 10.1056/NEJMoa1514762
  170. Koletzko B, Bhatia J, Bhutta Z, et al. Pediatric Nutrition in Practice, 2nd, revised edition. Basel: Karger, 2015. doi: 10.1159/isbn.978-3-318-02691-7
  171. Koletzko B, Goulet O, Hunt J, et al. 1. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr. 2005;41(2):S1–S87
  172. Koletzko B, Goulet O, Sobotka L, editors. Nutritional support in infants, children and adolescents. Basics in Clinical Nutrition, ed 4. Prague: Gelén, 2011. 625–653 pp.
  173. Ista E, Joosten K. Nutritional assessment and enteral support of critically ill children. Crit Care Nurs Clin North Am. 2005;17(4):385–393. doi: 10.1016/j.ccell.2005.07.011
  174. de Menezes FS, Leite HP, Nogueira PC. What are the factors that influence the attainment of satisfactory energy intake in pediatric intensive care unit patients receiving enteral or parenteral nutrition? Nutrition. 2013;29(1):76–80. doi: 10.1016/j.nut.2012.04.003
  175. Nilesh MM. Parenteral Nutrition in Critically Ill Children. N Engl J Med. 2016;374:1190–1192. doi: 10.1056/NEJMe1601140
  176. Lekmanov AU, Erpuleva YV, Suvorov SG. Practice of clinical nutrition in pediatric intensive care units: results of the «Nutriped-2015» research. Anesthesiology-resuscitation. 2016;61(5):376–380. (In Russ.) doi: 10.18821/0201-7563-2016-61-5-376-380
  177. Goulet O, Jochum F, Koletzko B. Early or Late Parenteral Nutrition in Critically Ill Children: Practical Implications of the PEPaNIC Trial. Ann Nutr Metab. 2017;70:34–38. doi: 10.1159/000455336
  178. Koletzko B, Goulet O, Jochum F, Shamir R. Use of parenteral nutrition in the pediatric ICU: should we panic because of PEPaNIC? Curr Opin Clin Nutr Metab Care. 2017;20(3):201–203. doi: 10.1097/MCO.0000000000000371
  179. Peters MJ, Argent A, Festa M, et al. The intensive care medicine clinical research agenda in paediatrics. Int Care Med. 2017;43(9):1210–1224. doi: 10.1007/s00134-017-4729-9
  180. Nilesh NM, Skillman HE, Irving SY, et al. Goday, and Carol Braunschweig Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Pediatric Critically Ill Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. JPEN J Parenter Enteral Nutr. 2017;41(5):706–742. doi: 10.1177/0148607117711387
  181. Kawai Y, Cornell TT, Cooley EG, et al. Therapeutic Plasma Exchange May Improve Hemodynamics and Organ Failure Among Children With Sepsis-Induced Multiple Organ Dysfunction Syndrome Receiving Extracorporeal Life Support. Pediatr Crit Care Med. 2015;16(4):366–374. doi: 10.1097/PCC.0000000000000351
  182. Stahl K, Bikker R, Seeliger B, et al. Effect of Therapeutic Plasma Exchange on Immunoglobulin Deficiency in Early and Severe Septic Shock. J Int Care Med. 2020:088506662096516. doi: 10.1177/0885066620965169
  183. Rimmer E, Houston BL, Kumar A, et al. The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit Care. 2014;18(6):699. doi: 10.1186/s13054-014-0699-2
  184. Putzu A, Schorer R, Lopez-Delgado JC, et al. Blood Purification and Mortality in Sepsis and Septic Shock. Anesthesiology. 2019;131(3):580–593. doi: 10.1097/ALN.0000000000002820
  185. Long EJ, Taylor A, Delzoppo C, et al. A randomised controlled trial of plasma filtration in severe paediatric sepsis. Crit Care Resusc. 2013;15(3):198–204
  186. Keith PD, Wells AH, Hodges J, et al. The therapeutic efficacy of adjunct therapeutic plasma exchange for septic shock with multiple organ failure: a single-center experience. Critical Care. 2020;24(1):518. doi: 10.1186/s13054-020-03241-6
  187. Knaup H, Stahl K, Schmidt BMW, et al. Early therapeutic plasma exchange in septic shock: a prospective open-label nonrandomized pilot study focusing on safety, hemodynamics, vascular barrier function, and biologic markers. Critical Care. 2018;22(1):285. doi: 10.1186/s13054-018-2220-9
  188. Snow TAC, Littlewood S, Corredor C, et al. Effect of Extracorporeal Blood Purification on Mortality in Sepsis: A Meta-Analysis and Trial Sequential Analysis. Blood Purification. 2020:1–11. doi: 10.1159/000510982
  189. Weiss SL, Peters MJ, Alhazzani W, et al. Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatr Crit Care Med. 2020;21(2):e52–e106. doi: 10.1097/pcc.0000000000002198
  190. Fayad AII, Buamscha DG, Ziapponi A. Timing of renal replacement therapy initiation for acute kidney injury. Meta-Analysis Cochrane Database Syst Rev. 2018;12(12):CD010612. doi: 10.1002/14651858.CD010612.pub2
  191. Guzzo I, de Galasso L, Mir S, et al. Acute dialysis in children: results of a European survey. J Nephrol. 2019;32(3):445–451. doi: 10.1007/s40620-019-00606-1
  192. Guo XH, Sun YF, Han SZ, et al. Continuous blood purification in children with severe sepsis. Randomized Controlled Trial. J Biol Regul Homeost Agents. 2017;31(2):389–394.
  193. Yarustovsky МB, Abramyan MV, Soldatkina AO, et al. Preliminary report regarding the use of LPS-adsorption in complex intensive therapy for children with gram-negative sepsis after heart surgery. Anesthesiology-resuscitation. 2017;62(5):376–381. (In Russ.)
  194. Maede Y, Ibara S, Tokuhisa T, et al. Polymyxin B-immobilized fiber column direct hemoperfusion and continuous hemodiafiltration in premature neonates with systemic inflammatory response syndrome. Pediatr Int. 2016;58(1):1176–1182. doi: 10.1111/ped.13006
  195. Nishizaki N, Hara T, Obinata K, et al. Clinical Effects and Outcomes After Polymyxin B–Immobilized Fiber Column Direct Hemoperfusion Treatment for Septic Shock in Preterm Neonates. Pediatr Crit Care Med. 2020;21(2):156–163. doi: 10.1097/pcc.0000000000002132
  196. Ankawi G, Neri M, Zhang J, et al. Extracorporeal techniques for the treatment of critically ill patients with sepsis beyond conventional blood purification therapy: the promises and the pitfalls. Crit Care. 2018;22(1). doi: 10.1186/s13054-018-2181-z
  197. Venkatesh B, Finfer S, Cohen J, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med. 2018;378(9):797–808. doi: 10.1056/NEJMoa1705835
  198. Annane D, Renault A, Brun-Buisson C, et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med. 2018;378(9):809–818. doi: 10.1056/NEJMoa1705716
  199. Rochwerg B, Oczkowski SJ, Siemieniuk RAC, Corticosteroids in sepsis: an updated systematic review and meta-analysis. Crit Care Med. 2018;46(9):1411–1420. doi: 10.1097/CCM.0000000000003262
  200. Wong HR, Cvijanovich NZ, Anas N, et al. Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am J Respir Crit Care Med. 2015;191(3):309–315. doi: 10.1164/rccm.201410-1864OC
  201. Agus MS, Wypij D, Hirshberg EL, et al. Tight glycemic control in critically ill children. N Engl J Med. 2017;376(8):729–741. doi: 10.1056/NEJMoa1612348
  202. Macrae D, Grieve R, Allen E, et al. A randomized trial of hyperglycemic control in pediatric intensive care. N Engl J Med. 2014;370(2):107–118. doi: 10.1056/NEJMoa1302564
  203. Dotson B, Larabell P, Patel JU, et al. Calcium administration is associated with adverse outcomes in critically ill patients receiving parenteral nutrition: results from a natural experiment created by a calcium gluconate shortage. Pharmacotherapy. 2016;36(11):1185–1190. doi: 10.1002/phar.1849
  204. Dias CR, Leite HP, Nogueira PC, et al. Ionized hypocalcemia is an early event and is associated with organ dysfunction in children admitted to the intensive care unit. J Crit Care. 2013;28(5):810–815. doi: 10.1016/j.jcrc.2013.03.019
  205. Karam O, Tucci M, Ducruet T, et al. Red blood cell transfusion thresholds in pediatric patients with sepsis. Pediatr Crit Care Med. 2011;12(5):512–518. doi: 10.1097/PCC.0b013e3181fe344b
  206. Hébert PC, Wells G, Blajchman MA, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion requirements in critical care investigators, canadian critical care trials group. N Engl J Med. 1999;340(6):409–417. doi: 10.1056/NEJM199902113400601
  207. Prikaz Ministerstva zdravoohranenija Rossijskoj Federacii (Minzdrav Rossii) ot 2 aprelja 2013 g. Nо. 183n «Ob utverzhdenii pravil klinicheskogo ispol’zovanija donorskoj krovi i (ili) ee komponentov». Moscow, 2013.
  208. Yang L, Stanworth S, Hopewell S, et al. Is fresh-frozen plasma clinically effective? An update of a systematic review of randomized controlled trials. Transfusion. 2012;52(8):1673–1686; quiz 1673. doi: 10.1111/j.1537-2995.2011.03515.x
  209. Karam O, Lacroix J, Robitaille N, et al. Association between plasma transfusions and clinical outcome in critically ill children: a prospective observational study. Vox Sang. 2013;104(4):342–349. doi: 10.1111/vox.12009
  210. Du Pont-Thibodeau G, Tucci M, Robitaille N, et al. Platelet transfusions in pediatric intensive care. Pediatr Crit Care Med. 2016;17(9):e420–е429. doi: 10.1097/PCC.0000000000000879
  211. Kreymann KG, de Heer G, Nierhaus A, Kluge S. Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit Care Med. 2007;35(120):2677–2685. doi: 10.1097/00003246-200712000-00001
  212. Kakoullis L, Pantzaris ND, Platanaki C, et al. The use of IgM-enriched immunoglobulin in adult patients with sepsis. J Crit Care. 2018;47:30–35. doi: 10.1016/j.jcrc.2018.06.005
  213. Cui J, Wei X, Lv H, et al. The clinical efficacy of intravenous IgM-enriched immunoglobulin (pentaglobin) in sepsis or septic shock: a meta-analysis with trial sequential analysis. Ann Intensive Care. 2019;9(1):27. doi: 10.1186/s13613-019-0501-3
  214. Aukrust P, Frøland SS, Liabakk NB, et al. Release of cytokines, soluble cytokine receptors, and interleukin-1 receptor antagonist after intravenous immunoglobulin administration in vivo. Blood. 1994;84(7):2136–2143. doi: 10.1182/blood.V84.7.2136.2136
  215. Rieben R, Roos A, Muizert Y, et al. Immunoglobulin M-enriched human intravenous immunoglobulin prevents complement activation in vitro and in vivo in a rat model of acute inflammation. Blood. 1999;93(3):942–951. doi: 10.1182/blood.V93.3.942
  216. Bermejo-Martín JF, Rodriguez-Fernandez A, Herrán-Monge R, et al. GRECIA Group (Grupo de Estudios y Análisis en Cuidados Intensivos). Immunoglobulins IgG1, IgM and IgA: a synergistic team influencing survival in sepsis. J Intern Med. 2014;276(4):404–412. doi: 10.1111/joim.12265
  217. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260–268. doi: 10.1016/S1473-3099(13)70001
  218. Alejandria MM, Lansang MA, Dans LF, Mantaring JB. 3rd. Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock. Cochrane Database Syst Rev. 2013;(9):CD001090. doi: 10.1002/14651858.CD001090.pub2
  219. El-Nawawy A, El-Kinany H, Hamdy El-Sayed M, et al. Intravenous polyclonal immunoglobulin administration to sepsis syndrome patients: A prospective study in a pediatric intensive care unit. J Trop Pediatr. 2005;51(5):271–278. doi: 10.1093/tropej/fmi011
  220. Beloborodova NV, Popov DA, Shatalov KV, et al. Zamestitel’naja immunoterapija pod kontrolem testa na prokal’citonin — novyj podhod k preduprezhdeniju manifestacii infekcii v posleoperacionnom periode u detej so slozhnymi vrozhdennymi porokami serdca. Heart and Vessels Diseases in Children. 2005;3:62–68. (In Russ.)
  221. Popov D, Yaroustovsky M, Lobacheva G. Prevention of infectious complications after heart surgery in children: procalcitonin-guided strategy. Kardiochir Torakochirurgia Pol. 2014;11(2):140–44. doi: 10.5114/kitp.2014.43840
  222. Kola E, Çelaj E, Bakalli I, et al. Efficacy of an IgM preparation in the treatment of patients with sepsis: a double-blind randomized clinical trial in a pediatric intensive care unit (Original research). SEEJPH. 2014;40(1):278. doi: 10.12908/SEEJPH2014-04
  223. Abdullayev E, Kilic O, Bozan G, et al. Clinical, laboratory features and prognosis of children receiving IgM-enriched immunoglobulin (3 days vs. 5 days) as adjuvant treatment for serious infectious disease in pediatric intensive care unit: a retrospective single-center experience (PIGMENT study). Human Vaccines & Immunotherapeutics. 2020;16(8):1997–2002. doi: 10.1080/21645515.2019.1711298
  224. Berlot G, Vassallo MC, Busetto N, et al. Relationship between the timing of administration of IgM and IgA enriched immunoglobulins in patients with severe sepsis and septic shock and the outcome: a retrospective analysis. J Crit Care. 2012;27(2):167–171. doi: 10.1016/j.jcrc.2011.05.012
  225. De Rosa FG, Corcione S, Tascini C, et al. A position paper on IgM-enriched intravenous immunoglobulin adjunctive therapy in severe acute bacterial infections: the TO-PIRO SCORE proposal. New Microbiol. 2019;42(3):176–180.
  226. Ponnarmeni S, Angurana SK, Singhi S, et al. Vitamin D deficiency in critically ill children with sepsis. Paediatr Int Child Health. 2016;36:15–21. doi: 10.1080/20469047.2015.1109274
  227. Reveiz L, Guerrero-Lozano R, Camacho A, et al: Stress ulcer, gastritis, and gastrointestinal bleeding prophylaxis in critically ill pediatric patients: A systematic review. Pediatr Crit Care Med. 2010;11(1):124–132. doi: 10.1097/PCC.0b013e3181b80e70
  228. Jimenez J, Drees M, Loveridge-Lenza B, et al. Exposure to gastric acid-suppression therapy is associated with health care- and community-associated Clostridium difficile infection in children. J Pediatr Gastroenterol Nutr. 2015;61(2):208–211. doi: 10.1097/MPG.0000000000000790
  229. Cook D, Heyland D, Griffith L, et al. Risk factors for clinically important upper gastrointestinal bleeding in patients requiring mechanical ventilation. Canadian Critical Care Trials Group. Crit Care Med. 1999;27(12):2812–2817. doi: 10.1097/00003246-199912000-00034
  230. Duerksen DR. Stress-related mucosal disease in critically ill patients. Best Pract Res Clin Gastroenterol. 2003;17(3):327–344. doi: 10.1016/S1521-6918(03)00028-3
  231. Massicotte P, Julian JA, Gent M, et al. PROTEKT Study Group: An open-label randomized controlled trial of low molecular weight heparin for the prevention of central venous line-related thrombotic complications in children: The PROTEKT trial. Thromb Res. 2003;109(2-3):101–108. doi: 10.1016/S0049-3848(03)00099-9
  232. Epifanov VA, Jushhuk ND, Epifanov AV. Mediko-social’naja reabilitacija posle infekcionnyh zabolevanij. M.: GJeOTAR-Media, 2020. 560 p. (In Russ.)
  233. Karpov IA, Gorbich JL, Kulagin AE, et al. Sepsis: diagnostika, principy antimikrobnoj i podderzhivajushhej terapii (uchebno-metodicheskoe posobie). Minsk: BGMU, 2019. 28 p. (In Russ.)
  234. Seymour CW, Wiersinga WJ, editors. Handbook of sepsis. Springer, 2018. 268 p. doi: 10.1007/978-3-319-73506-1.
  235. Odetola FO, Gebremariam A. Transfer hospitalizations for pediatric severe sepsis or septic shock: resource use and outcomes. BMC Pediatr. 2019;19(1):196. doi: 10.1186/s12887-019-1577-5.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Алгоритмы действий врача

Скачать (321KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».