Сепсис у детей: федеральные клинические рекомендации (проект)
- Авторы: Лекманов А.У.1, Миронов П.И.2, Александрович Ю.С.3, Азовский Д.К.4, Попов Д.А.5,6, Пшениснов К.В.3, Музуров А.Л.5,6, Дегтярева Е.А.7
-
Учреждения:
- Российский национальный исследовательский медицинский университет им. Н.И. Пирогова
- Башкирский государственный медицинский университет
- Санкт-Петербургский государственный педиатрический медицинский университет
- Клиническая больница № 1 АО «Группа Компаний «Медси»
- Национальный медицинский исследовательский центр сердечно-сосудистой хирургии им. А.Н. Бакулева
- Российская медицинская академия непрерывного профессионального образования
- Российский университет дружбы народов
- Выпуск: Том 11, № 2 (2021)
- Страницы: 241-292
- Раздел: Клинические рекомендации
- URL: https://journal-vniispk.ru/2219-4061/article/view/123166
- DOI: https://doi.org/10.17816/psaic969
- ID: 123166
Цитировать
Полный текст
Аннотация
В статье публикуется проект клинических рекомендаций по сепсису у детей, разработанный специалистами Ассоциации детских анестезиологов-реаниматологов (АДАР) России и утвержденный на 2-м Российском съезде детских анестезиологов-реаниматологов в апреле 2021 г. Предложены и обоснованы дефиниции сепсиса и септического шока у педиатрических пациентов и их критерии. Представлены данные по этиологии и патогенезу, эпидемиологии, клинической картине и диагностике шока. Рекомендации обоснованы на большом клиническом материале интенсивной терапии сепсиса и септического шока у детей. В работе приведены данные о реабилитации, профилактике и организации медицинской службы при сепсисе у детей. Редакция журнала принимает все замечания и добавления к данному проекту для передачи разработчикам.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Андрей Устинович Лекманов
Российский национальный исследовательский медицинский университет им. Н.И. Пирогова
Автор, ответственный за переписку.
Email: aulek@rambler.ru
д-р мед. наук, профессор
Россия, 117997, Москва, ул. Островитянова, дом 1Петр Иванович Миронов
Башкирский государственный медицинский университет
Email: mironovpi@mail.ru
ORCID iD: 0000-0002-9016-9461
SPIN-код: 5617-6616
д-р мед. наук
Россия, УфаЮрий Станиславович Александрович
Санкт-Петербургский государственный педиатрический медицинский университет
Email: jalex1963@mail.ru
ORCID iD: 0000-0002-2131-4813
SPIN-код: 2225-1630
д-р мед. наук
Россия, Санкт-ПетербургДмитрий Кириллович Азовский
Клиническая больница № 1 АО «Группа Компаний «Медси»
Email: azovskii.dk@medsigroup.ru
ORCID iD: 0000-0003-2352-0909
SPIN-код: 3100-6771
д-р мед. наук
Россия, МоскваДмитрий Александрович Попов
Национальный медицинский исследовательский центр сердечно-сосудистой хирургии им. А.Н. Бакулева; Российская медицинская академия непрерывного профессионального образования
Email: da_popov@inbox.ru
ORCID iD: 0000-0003-1473-1982
SPIN-код: 6694-6714
д-р мед. наук
Россия, Москва; МоскваКонстантин Викторович Пшениснов
Санкт-Петербургский государственный педиатрический медицинский университет
Email: Psh_K@mail.ru
ORCID iD: 0000-0003-1113-5296
SPIN-код: 8423-4294
канд. мед. наук
Россия, Санкт-ПетербургАлександр Львович Музуров
Национальный медицинский исследовательский центр сердечно-сосудистой хирургии им. А.Н. Бакулева; Российская медицинская академия непрерывного профессионального образования
Email: al_muz@mail.ru
ORCID iD: 0000-0003-4131-9440
SPIN-код: 8489-9991
канд. мед. наук
Россия, Москва; МоскваЕлена Александровна Дегтярева
Российский университет дружбы народов
Email: dgp48@yandex.ru
ORCID iD: 0000-0002-3219-2145
SPIN-код: 3606-5570
доктор мед. наук, профессор, заслуженный врач Российской Федерации
Россия, МоскваСписок литературы
- Lekmanov AU, Mironov PI. Pediatric sepsis — time to reach agreement. Russian Bulletin of perinatology and pediatrics. 2020; 65(3):131–137. (In Russ.) doi: 10.21508/1027-4065-2020-65-3-131-137
- Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101(6):1644–1655. doi: 10.1378/chest.101.6.1644
- Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6(1):2–8. doi: 10.1097/01.PCC.0000149131.72248.E6
- Weiss SL, Fitzgerald JC, Pappachan J, et al. Sepsis Prevalence, Outcomes, and Therapies (SPROUT) Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2015;191(10):1147–115. doi: 10.1164/rccm.201412-2323OC
- de Souza DC, Machado FR. Epidemiology of Pediatric Septic Shock. J Pediatr Intensive Care. 2019;8(1):3–10. doi: 10.1055/s-0038-1676634
- Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287
- Matics TJ, Sanchez-Pinto LN. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the Sepsis-3 definitions in critically ill children. JAMA Pediatr. 2017;171(10):e172352. doi: 10.1001/jamapediatrics.2017.2352
- Schlapbach LJ, Straney L, Bellomo R, et al. Prognostic accuracy of age-adapted SOFA, SIRS, PELOD-2, and qSOFA for in-hospital mortality among children with suspected infection admitted to the intensive care unit. Int Care Med. 2018;44:179–188. doi: 10.1007/s00134-017-5021-8
- Davis AL, Carcillo JA, Aneja RK, et al. American College of Critical Care Medicine Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit Care Med. 2017;45(9):1061–1093. doi: 10.1097/CCM.00do00000000002425
- Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. The Lancet. 2020;396:200–211. doi: 10.1016/S0140-6736(19)32989-7
- Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589–1596. doi: 10.1097/01.CCM.0000217961.75225.E9
- Agyeman PKA, Schlapbach LJ, Giannoni E, et al. Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study. Lancet Child Adolesc Health. 2017;1(2):124–133. doi: 10.1016/S2352-4642(17)30010-X
- Martischang R, Pires D, Masson-Roy S, et al. Promoting and sustaining a historical and global effort to prevent sepsis: the 2018 World Health Organization SAVE LIVES, Clean Your Hands campaign. Crit Care. 2018;22:7–9. doi: 10.1186/s13054-018-2011-3
- Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348(2):138–150. doi: 10.1056/NEJMra021333
- Legrand M, De Backer D, Dépret F, Ait-Oufella H. Recruiting the microcirculation in septic shock. Ann Intensive Care. 2019;9:102. doi: 10.1186/s13613-019-0577-9
- Sinert RH. Fast Five Quiz: Refresh Your Knowledge on Key Aspects of Sepsis. Medscape. 2018;172:312–314
- Schlapbach LJ, Kissoon N. Defining pediatric sepsis. JAMA Pediatr. 2018;172(4):312–314. doi: 10.1001/jamapediatrics.2017.5208
- Balamuth F, Weiss SL, Neuman MI, et al. Pediatric severe sepsis in U.S. children’s hospitals. Pediatr Crit Care Med. 2014;15(9):798–805. doi: 10.1097/PCC.0000000000000225
- Boeddha N, Schlapbach N, Driessen G, et al. Mortality and morbidity in community-acquired sepsis in European pediatric intensive care units: a prospective cohort study from the European Childhood Life-threatening Infectious Disease Study (EUCLIDS). Crit Care. 2018;22:143. doi: 10.1186/s13054-018-2052-7
- Weiss SL, Peters MJ, Alhazzani W, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020;46(1):10–67. doi: 10.1007/s00134-019-05878-6
- Killien EY, Farris RWD, Watson RS, et al. Health-Related Quality of Life Among Survivors of Pediatric Sepsis. Pediatr Crit Care Med. 2019;20(6):501–509. doi: 10.1097/PCC.0000000000001886
- Carlton EF, Barbaro RP, Iwashyna TJ, Prescott HC. Cost of Pediatric Severe Sepsis Hospitalizations. JAMA Pediatr. 2019;173(10):986–987. doi: 10.1001/jamapediatrics.2019.2570
- Tidswell R, Inada-Kim M, Singer M. Sepsis: the importance of an accurate final diagnosis. Lancet Respir Med. 2021;9(1):17–18. doi: 10.1016/S2213-2600(20)30520-8
- WHO releases new International Classification of Diseases (ICD 11). [Internet]. Available from: https://www.who.int/news/item/18-06-2018-who-releases-new-international-classification-of-diseases-(icd-11).
- Gel’fand BR, editor. Sepsis: klassifikacija, kliniko-diagnosticheskaja koncepcija i lechenie. 4-e izd., dop. i pererab. Moscow: Medicinskoe informacionnoe agentstvo, 2017. 408 p. (In Russ.)
- Evans IVR, Phillips GS, Alpern ER, et al. Association between the New York sepsis care mandate and in-hospital mortality for pediatric sepsis. JAMA. 2018;320(4):358–367. doi: 10.1001/jama.2018.9071
- Paul R, Melendez E, Stack A, et al. Improving adherence to PALS septic shock guidelines. Pediatrics. 2014;133(5):e1358–e1366. doi: 10.1542/peds.2013-3871
- Lane RD, Funai T, Reeder R, et al. High reliability pediatric septic shock quality improvement initiative and decreasing mortality. Pediatrics. 2016;138(4):e20154153. doi: 10.1542/peds.2015-4153
- Gonsalves WI, Cornish N, Moore M, et al. Effects of volume and site of blood draw on blood culture results. J Clin Microbiol. 2009;47:3482–3485. doi: 10.1128/JCM.02107-08
- Freedman SB, Roosevelt GE. Utility of anaerobic blood cultures in a pediatric emergency department. Pediatr Emerg Care. 2004;20(7):433–436. doi: 10.1097/01.pec.0000132215.57976.99
- Popov DA, Nadtochey EA, Vostrikova TYu, Ovseenko ST. Accelerated Techniques of Pathogen Identification from Positive Blood Cultures by MALDI-TOF Mass Spectrometry. Clinical Microbiology and Antimicrobial Chemotherapy. 2016;18(4):296–307. (In Russ.)
- Schlapbach LJ, MacLaren G, Festa M, et al. Australian & New Zealand Intensive Care Society (ANZICS) Centre for Outcomes & Resource Evaluation (CORE) and Australian & New Zealand Intensive Care Society (ANZICS) Paediatric Study Group: Prediction of pediatric sepsis mortality within 1h of intensive care admission. Intensive Care Med. 2017;43:1085–1096. doi: 10.1007/s00134-017-4701-8
- Schlapbach LJ, MacLaren G, Straney L. Venous vs arterial lactate and 30-day mortality in pediatric sepsis. JAMA Pediatr. 2017;171(8):813. doi: 10.1001/jamapediatrics.2017.1598
- Scott HF, Brou L, Deakyne SJ, et al. Association between early lactate levels and 30-day mortality in clinically suspected sepsis in children. JAMA Pediatr. 2017;171(3):249–255. doi: 10.1001/jamapediatrics.2016.3681
- Nguyen HB, Rivers EP, Knoblich BP, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004;32(8):1637–1642. doi: 10.1097/01.CCM.0000132904.35713.A7
- Morin L, Ray S, Wilson C, et al. Refractory septic shock in children: a European Society of Paediatric and Neonatal Intensive Care definition. ESPNIC Refractory Septic Shock Definition Taskforce the Infection Systemic Inflammation Sepsis section of ESPNIC. Intensive Care Med. 2016;42(12):1948–1957. doi: 10.1007/s00134-016-4574-2
- Gorgis N, Asselin JM, Fontana C, et al. Evaluation of the association of early elevated lactate with outcomes in children with severe sepsis or septic shock. Pediatr Emerg Care. 2019;35:661–665. doi: 10.1097/PEC.0000000000001021
- Bai Z, Zhu X, Li M, et al. Effectiveness of predicting in-hospital mortality in critically ill children by assessing blood lactate levels at admission. BMC Pediatr. 2014;14:83. doi: 10.1186/1471-2431-14-83
- Scott HF, Brou L, Deakyne SJ, et al. Lactate Clearance and Normalization and Prolonged Organ Dysfunction in Pediatric Sepsis. J Pediatr. 2016;170:149–55.e1-4. doi: 10.1016/j.jpeds.2015.11.071 J Pediatr
- Bakker J, Maarten WN, Jansen TC. Clinical use of lactate monitoring in critically ill patients. Annals of Intensive Care. 2013;3:12. doi: 10.1186/2110-5820-3-12
- Wong HR, Cvijanovich NZ, Anas N, et al. Pediatric sepsis biomarker risk model-II: redefining the pediatric sepsis biomarker risk model with septic shock phenotype. Crit Care Med. 2016;44(11):2010–2017. doi: 10.1097/CCM.0000000000001852
- Wong HR, Weiss SL, Giuliano Jr JS, et al. Testing the Prognostic Accuracy of the Updated Pediatric Sepsis Biomarker Risk Model. PLoS ONE. 2016;9(1):e86242. doi: 10.1371/journal.pone.0086242
- Wong HR, Cvijanovich NZ, Anas N, et al. Improved risk stratification in pediatric septic shock using both protein and mRNA biomarkers. PERSEVERE-XP. Am J Respir Crit Care Med. 2017;196(4):494–501. doi: 10.1164/rccm.201701-0066OC
- Wong HR, Caldwell JT, Cvijanovich NZ, et al. Prospective clinical testing and experimental validation of the Pediatric Sepsis Biomarker Risk Model. Sci Transl Med. 2019;11(518):eaax9000. doi: 10.1126/scitranslmed.aax9000
- Herberg JA, Kaforou M, Wright VJ, et al. Diagnostic accuracy of a 2-transcript host RNA signature for discriminating bacterial vs viral infection in febrile children. JAMA. 2016;316(8):835–845.
- Raymond SL, Lopez MC, Baker HV, et al. Unique transcriptomic response to sepsis is observed among patients of different age groups. PLoS One. 2017;12(9):e0184159. doi: 10.1371/journal.pone.0184159
- Balamuth F, Alpern ER, Kan M, et al. Gene expression profiles in children with suspected sepsis. Ann Emerg Med. 2020;75(6):744–754. doi: 10.1016/j.annemergmed.2019.09.020
- Lamping F, Jack T, Rubsamen N, et al. Development and validation of a diagnostic model for early differentiation of sepsis and non-infectious SIRS in critically ill children — a data-driven approach using machine learning algorithms. BMC Pediatr. 2018;18(1):112. doi: 10.1186/s12887-018-1082-2
- Han YY, Carcillo JA, Dragotta MA, et al. Early reversal of pediatric-neonatal septic shock by community physicians is associated with improved outcome. Pediatrics. 2003;112(4):793–799. doi: 10.1542/peds.112.4.793
- Paul R, Neuman MI, Monuteaux MC, et al. Adherence to PALS sepsis guidelines and hospital length of stay. Pediatrics. 2012;130(2):e273–e280. doi: 10.1542/peds.2012-0094
- Machado FR, Ferreira EM, Schippers P, et al. Implementation of sepsis bundles in public hospitals in Brazil: a prospective study with heterogeneous results. Crit Care. 2017;21:268. doi: 10.1186/s13054-017-1858-z
- Balamuth F, Weiss SL, Fitzgerald JC, et al. Protocolized treatment is associated with decreased organ dysfunction in pediatric severe sepsis. Pediatr Crit Care Med. 2016;17(9):817–822. doi: 10.1097/PCC.0000000000000858
- Cruz AT, Perry AM, Williams EA, et al. Implementation of goal-directed therapy for children with suspected sepsis in the emergency department. Pediatrics. 2011;127(3):e758–e766. doi: 10.1542/peds.2010-2895
- Kortz TB, Axelrod DM, Chisti MJ, et al. Clinical outcomes and mortality before and after implementation of a pediatric sepsis protocol in a limited resource setting: A retrospective cohort study in Bangladesh. PLoS One. 2017;12:e0181160. doi: 10.1371/journal.pone.0181160
- Long E, Babl FE, Angley E, et al. A prospective quality improvement study in the emergency department targeting paediatric sepsis. Arch Dis Child. 2016;101(10):945–950. doi: 10.1136/archdischild-2015-310234
- Workman JK, Ames SG, Reeder RW, et al. Treatment of pediatric septic shock with the surviving sepsis campaign guidelines and PICU patient outcomes. Pediatr Crit Care Med. 2016;17(10):e451–e458. doi: 10.1097/PCC.0000000000000906
- Schlapbach LJ, Weiss SL, Wolf J. Reducing collateral damage from mandates for time to antibiotics in pediatric sepsis-primum non nocere. JAMA Pediatr. 2019;173(5):409–410. doi: 10.1001/jamapediatrics.2019.0174
- Tuuri RE, Gehrig MG, Busch CE, et al. “Beat the Shock Clock”: An interprofessional team improves pediatric septic shock care. Clin Pediatr (Phila). 2016;55:626–638. doi: 10.1177/0009922815601984
- Weiss SL, Fitzgerald JC, Balamuth F, et al. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit Care Med. 2014;42(11):2409–2417. doi: 10.1097/CCM.0000000000000509
- Sukhorukova MV, Edelstein MV, Skleenova EYu, et al. Antimicrobial resistance of nosocomial Enterobacterales isolates in Russia: results of multicenter epidemiological study “MARATHON 2015–2016”. Clinical Microbiology and Antimicrobial Chemotherapy. 2019;21(2):147–159. (In Russ.)
- Beloborodov VB, Brusina EB, Kozlov RS, et al. Programma SKAT (strategija kontrolja antimikrobnoj terapii) pri okazanii stacionarnoj medicinskoj pomoshhi. Rossijskie klinicheskie rekomendacii. Moscow: Pero Publ., 2018. 156 p. (In Russ.)
- Beloborodov VB, Gusarov VG, Dekhnich AV, et al. Guidelines of the Association of Anesthesiologists-Intensivists, the Interregional Non-Governmental Organization Alliance of Clinical Chemotherapists and Microbiologists, the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC), and NGO Russian Sepsis Forum Diagnostics and antimicrobial therapy of the infections caused by multiresistant microorganisms. Messenger of anesthesiology and resuscitation. 2020;17(1):52–83. (In Russ.) doi: 10.21292/2078-5658-2020-16-1-52-83
- Godbout EJ, Pakyz AL, Markley JD, et al. Pediatric antimicrobial stewardship: State of the art. Curr Infect Dis Rep. 2018;20:39. doi: 10.1007/s11908-018-0644-7
- Weiss CH, Persell SD, Wunderink RG, et al. Empiric antibiotic, mechanical ventilation, and central venous catheter duration as potential factors mediating the effect of a checklist prompting intervention on mortality: An exploratory analysis. BMC Health Serv Res. 2012;12:198. doi: 10.1186/1472-6963-12-198
- Weiss CH, Moazed F, McEvoy CA, et al. Prompting physicians to address a daily checklist and process of care and clinical outcomes: A single-site study. Am J Respir Crit Care Med. 2011;184(6):680–686. doi: 10.1164/rccm.201101-0037OC
- Public Health England: Start Smart - Then Focus. 2015. United Kingdom, Public Health England [Internet]. [Cited 15 March 2021] Available from: https://www.gov.uk/government/publications/antimicrobial-stewardship-start-smart-then-focus#history.
- Baddour LM, Wilson WR, Bayer AS, et al. American Heart Association Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young, Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Stroke Council: Infective endocarditis in adults: Diagnosis, antimicrobial therapy, and management of complications: A scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132(15):1435–1486. doi: 10.1161/CIR.0000000000000296
- Chotiprasitsakul D, Han JH, Cosgrove SE, et al. Antibacterial Resistance Leadership Group: Comparing the outcomes of adults with Enterobacteriaceae bacteremia receiving short-course versus prolonged-course antibiotic therapy in a multicenter, propensity score-matched cohort. Clin Infect Dis. 2018;66(2):172–177. doi: 10.1093/cid/cix767
- Chong YP, Moon SM, Bang KM, et al. Treatment duration for uncomplicated Staphylococcus aureus bacteremia to prevent relapse: Analysis of a prospective observational cohort study. Antimicrob Agents Chemother. 2013;57:1150–1156. doi: 10.1128/AAC.01021-12
- Lehrnbecher T, Robinson P, Fisher B, et al. Guideline for the management of fever and neutropenia in children with cancer and hematopoietic stem-cell transplantation recipients: 2017 update. J Clin Oncol. 2017;35(18):2082–2094. doi: 10.1200/JCO.2016.71.7017
- Meisner M. Procalcitonin (PCT) A new, innovative infection parameter. Biochemical and clinical aspects. Stuttgart: Georg Thieme Verlag, 2000. 196 p.
- Schuetz P, Briel M, Christ-Crain M, et al. Procalcitonin to guide initiation and duration of antibiotic treatment in acute respiratory infections: an individual patient data meta-analysis. Clin Infect Dis. 2012;55(5):651–662. doi: 10.1093/cid/cis464
- Prkno A, Wacker C, Brunkhorst FM, Schlattmann P. Procalcitonin guided therapy in intensive care unit patients with severe sepsis and septic shock - a systematic review and meta-analysis. Crit Care. 2013;17(6):R291. doi: 10.1186/cc13157
- Downes KJ, Fitzgerald JC, Schriver E, et al. Implementation of a pragmatic biomarker-driven algorithm to guide antibiotic use in the pediatric intensive care unit: the Optimizing Antibiotic Strategies in Sepsis (OASIS) II Study. J Pediatr Infect Dis Soc. 2020;9(1):36–43. doi: 10.1093/jpids/piy113
- Schuetz P, Chiappa V, Briel M, Greenwald JL. Procalcitonin algorithms for antibiotic therapy decisions: a systematic review of randomized controlled trials and recommendations for clinical algorithms. Arch Intern Med. 2011;171(15):1322–1331. doi: 10.1001/archinternmed.2011.318
- Petel D, Winters N, Gore GC, et al. Use of C-reactive protein to tailor antibiotic use: a systematic review and meta-analysis. BMJ Open. 2018;8(12):e022133. doi: 10.1136/bmjopen-2018-022133
- Hagedoorn NN, Borensztajn D, Nijman RG, et al. Development and validation of a prediction model for invasive bacterial infections in febrile children at European Emergency Departments: MOFICHE, a prospective observational study. Arch Dis Child. 2020:archdischild-2020-319794. doi: 10.1136/archdischild-2020-319794
- Lagunes L, Encina B, Ramirez-Estrada S. Current understanding in source control management in septic shock patients: A review. Ann Transl Med. 2016:4(17):330. doi: 10.21037/atm.2016.09.02
- Rhodes A, Evans LE, Alhazzani W, et al: Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–377. doi: 10.1007/s00134-017-4683-6
- Schlapbach LJ, Straney L, Alexander J, et al. ANZICS Paediatric Study Group: Mortality related to invasive infections, sepsis, and septic shock in critically ill children in Australia and New Zealand, 2002-13: A multicentre retrospective cohort study. Lancet Infect Dis. 2015;15:46–54. doi: 10.1016/S1473-3099(14)71003-5
- Fustes-Morales A, Gutierrez-Castrellon P, Duran-Mckinster C, et al. Necrotizing fasciitis: Report of 39 pediatric cases. Arch Dermatol. 2002;138(7):893–899. doi: 10.1001/archderm.138.7.893
- Endorf FW, Garrison MM, Klein MB, et al: Characteristics, therapies, and outcome of children with necrotizing soft tissue infections. Pediatr Infect Dis J. 2012;31(3):221–223. doi: 10.1097/INF.0b013e3182456f02
- Vasudevan C, Oddie SJ, McGuire W. Early removal versus expectant management of central venous catheters in neonates with bloodstream infection. Cochrane Database Syst Rev. 2016;4(4):CD008436. doi: 10.1002/14651858
- Rodriguez D, Park BJ, Almirante B, et al. Barcelona Candidemia Project Study Group: Impact of early central venous catheter removal on outcome in patients with candidaemia. Clin Microbiol Infect. 2007;13(8):788–793. doi: 10.1111/j.1469-0691.2007.01758.x
- Santhanam I, Sangareddi S, Venkataraman S, et al. A prospective randomized controlled study of two fluid regimens in the initial management of septic shock in the emergency department. Pediatr Emerg Care. 2008;24(10):647–655. doi: 10.1097/PEC.0b013e31818844cf
- Inwald DP, Canter R, Woolfall K, et al. Restricted fluid bolus volume in early septic shock: Results of the Fluids in Shock pilot trial. Arch Dis Child. 2019;104(5):426–431. doi: 10.1136/archdischild-2018-314924
- Sankar J, Javed MD, Sankar M, et al. Fluid bolus over 15-20 versus 5-10 minutes each in the first hour of resuscitation in children with septic shock: A randomized controlled trial. Pediatr Crit Care Med. 2017;18(10):e435–e445. doi: 10.1097/PCC.0000000000001269
- Arikan AAA, Zappitelli M, Goldstein SL, et al. Fluid overload is associated with impaired oxygenation and morbidity in critically ill children. Pediatr Crit Care Med. 2012;13(3):253–258. doi: 10.1097/PCC.0b013e31822882a3
- Alobaidi R, Morgan C, Basu RK, et al. Association between fluid balance and outcomes in critically ill children: A systematic review and meta-analysis. JAMA Pediatr. 2018;172(3):257–268. doi: 10.1001/jamapediatrics.2017.4540
- Samransamruajkit R, Uppala R, Pongsanon K, et al. Clinical outcomes after utilizing surviving sepsis campaign in children with septic shock and prognostic value of initial plasma NT-proBNP. Indian J Crit Care Med. 2014;18(2):70–76. doi: 10.4103/0972-5229.126075
- Chen J, Li X, Bai Z, et al. Association of fluid accumulation with clinical outcomes in critically ill children with severe sepsis. PLoS One. 2016;11(7):1–17. doi: 10.1371/journal.pone.0160093
- Fung JST, Akech S, Kissoon N, et al. Determining predictors of sepsis at triage among children under 5 years of age in resource-limited settings: A modified Delphi process. PLoS One. 2019;14(1):1–14. doi: 10.1371/journal.pone.0211274
- Maitland K, Kiguli S, Opoka RO, et al. Mortality after Fluid Bolus in African Children with Severe Infection. N Engl J Med. 2011;364(26):2483–2495. doi: 10.1056/NEJMoa1101549
- Weiss SL, Keele L, Balamuth F, et al. Crystalloid Fluid Choice and Clinical Outcomes in Pediatric Sepsis: A Matched Retrospective Cohort Study. J Pediatr Mosby Inc. 2017;182:304–310.e10. doi: 10.1016/j.jpeds.2016.11.075
- Emrath ET, Fortenberry JD, Travers C, et al. Resuscitation with Balanced Fluids Is Associated with Improved Survival in Pediatric Severe Sepsis. Crit Care Med. 2017;45(7):1177–1183. doi: 10.1097/CCM.0000000000002365
- Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care Critical Care. 2019;23(1):16. doi: 10.1186/s13054-018-2292-6
- Becker BF, Chappell D, Bruegger D, et al. Therapeutic strategies targeting the endothelial glycocalyx: Acute deficits, but great potential. Cardiovasc Res. 2010;87(2):300–310. doi: 10.1093/cvr/cvq137
- Hariri G, Joffre J, Deryckere S, et al. Albumin infusion improves endothelial function in septic shock patients: a pilot study. Intensive Care Med. 2018;44(5):669–671. doi: 10.1007/s00134-018-5075-2
- Caironi P, Tognoni G, Masson S, et al. Albumin Replacement in Patients with Severe Sepsis or Septic Shock. N Engl J Med. 2014;370(15):1412–1421. doi: 10.1056/NEJMoa1305727
- Xu JY, Chen Q-H, Xie J-F, et al. Comparison of the effects of albumin and crystalloid on mortality in adult patients with severe sepsis and septic shock: A meta-analysis of randomized clinical trials. Crit Care. 2014;18(6):1–8. doi: 10.1186/s13054-014-0702-y
- Perner A, Haase N, Guttormsen AB, et al. Hydroxyethyl Starch 130/0.42 versus Ringer’s Acetate in Severe Sepsis. N Engl J Med. 2012;367(2):124–134. doi: 10.1056/NEJMoa1204242
- Brierley J, Peters MJ. Distinct Hemodynamic Patterns of Septic Shock at Presentation to Pediatric Intensive Care. Pediatrics. 2008;122(4):752–759. doi: 10.1542/peds.2007-1979
- Tibby SM, Hatherill M, Marsh MJ, Murdoch IA. Clinicians’ abilities to estimate cardiac index in ventilated children and infants. Arch Dis Child. 1997;77(6):516–518. doi: 10.1136/adc.77.6.516
- Egan JR, Festa M, Cole AD, et al. Clinical assessment of cardiac performance in infants and children following cardiac surgery. Intensive Care Med. 2005;31(4):568–573. doi: 10.1007/s00134-005-2569-5
- Ranjit S, Aram G, Kissoon N, et al. Multimodal Monitoring for Hemodynamic Categorization and Management of Pediatric Septic Shock. Pediatr Crit Care Med. 2014;15(1):e17–e26. doi: 10.1097/PCC.0b013e3182a5589c
- Pollack MM, Fields AI, Ruttimann UE. Distributions of cardiopulmonary variables in pediatric survivors and nonsurvivors of septic shock. Crit Care Med. 1985;13(6):454–459. doi: 10.1097/00003246-198506000-00002
- Morin L, Kneyber M, Jansen NGJ, et al. Translational gap in pediatric septic shock management: an ESPNIC perspective. Ann Int Care. 2019;9(1):73. doi: 10.1186/s13613-019-0545-4
- Ranjit S, Natraj R, Kandath SK, et al. Early norepinephrine decreases fluid and ventilatory requirements in pediatric vasodilatory septic shock. Indian J Crit Care Med. 2016;20(10):561–569. doi: 10.4103/0972-5229.192036
- Permpikul C, Tongyoo S, Viarasilpa T, et al. Early Use of Norepinephrine in Septic Shock Resuscitation (CENSER). A Randomized Trial. Am J Respir Crit Care Med. 2019;199(9):1097–1105. doi: 10.1164/rccm.201806-1034OC
- Elbouhy MA, Soliman M, Gaber A, et al. Early Use of Norepinephrine Improves Survival in Septic Shock: Earlier than Early. Arch Med Res. 2019;50(6):325–332. doi: 10.1016/j.arcmed.2019.10.003
- Wen L, Xu L. The efficacy of dopamine versus epinephrine for pediatric or neonatal septic shock: A meta-analysis of randomized controlled studies. Ital J Pediatr. 2020;46(1):1–7. doi: 10.1186/s13052-019-0768-x
- Russell JA. Vasopressor therapy in critically ill patients with shock. Int Care Med. 2019;45(11):1503–1517. doi: 10.1007/s00134-019-05801-z
- De Backer D, Biston P, Devriendt J, et al. Comparison of Dopamine and Norepinephrine in the Treatment of Shock. N Engl J Med. 2010;362(9):779–789. doi: 10.1056/NEJMoa0907118.
- Azovsky DK, Lekmanov AU, Pilyutik SF. Usage of selective β1-blocker atenolol in children with a severe burn trauma. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2016;6(3):73–80. (In Russ.)
- Herndon DN, Hart DW, Wolf SE, et al. Reversal of Catabolism by Beta-Blockade after Severe Burns. N Engl J Med. 2001;345(17):1223–1229. doi: 10.1056/NEJMoa010342
- Walsh BK, Smallwood CD. Pediatric Oxygen Therapy: A Review and Update. Respir Care. 2017;62(6):645–661. doi: 10.4187/respcare.05245
- Aubier M, Viires N, Syllie G, et al. Respiratory muscle contribution to lactic acidosis in low cardiac output. Am Rev Respir Dis. 1982;126(4):648–652. doi: 10.1164/arrd.1982.126.4.648
- Cheifetz IM. Invasive and noninvasive pediatric mechanical ventilation. Respir Care. 2003;48(4):442–453.
- Pham T, Brochard LJ, Slutsky AS. Mechanical ventilation: state of the art. Mayo Clin Proc. 2017;92(9):1382–1400. doi: 10.1016/j.mayocp.2017.05.004
- Ghuman AK, Newth CJ, Khemani RG. The association between the end tidal alveolar dead space fraction and mortality in pediatric acute hypoxemic respiratory failure. Pediatr Crit Care Med. 2012;13(1):11–15. doi: 10.1097/PCC.0b013e3182192c42
- Khemani RG, Smith L, Lopez-Fernandez YM, et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir Med. 2019;7(2):115–128. doi: 10.1016/S2213-2600(18)30344-8
- Jones P, Dauger S, Denjoy I, et al. The effect of atropine on rhythm and conduction disturbances during 322 critical care intubations. Pediatr Crit Care Med. 2013;14(9):e289–e297. doi: 10.1097/PCC.0b013e31828a8624
- Jabre P, Avenel A, Combes X, et al. Morbidity related to emergency endotracheal intubation — a substudy of the KETAmine SEDation trial. Resuscitation. 2011;82(5):517–522. doi: 10.1016/j.resuscitation.2011.01.015
- Barois J, Tourneux P. Ketamine and atropine decrease pain for preterm newborn tracheal intubation in the delivery room: An observational pilot study. Acta Paediatr. 2013;102(2):e534–e538. doi: 10.1111/apa.12413
- Hall RW. Anesthesia and analgesia in the NICU. Clin Perinatol. 2012;39(1):239–254. doi: 10.1016/j.clp.2011.12.013
- Nemergut ME, Yaster M, Colby CE. Sedation and analgesia to facilitate mechanical ventilation. Clin Perinatol. 2013;40(3):539–558. doi: 10.1016/j.clp.2013.05.005
- Abadesso C, Nunes P, Silvestre C, et al. Non-invasive ventilation in acute respiratory failure in children. Pediatr Rep. 2012;4(2):e16. doi: 10.4081/pr.2012.e16
- Piastra M, De Luca D, Pietrini D, et al. Noninvasive pressure support ventilation in immunocompromised children with ARDS: a feasibility study. Intensive Care Med. 2009;35:1420–1427. doi: 10.1007/s00134-009-1558-5
- Piastra M, De Luca D, Marzano L, et al. The number of failing organs predicts non-invasive ventilation failure in children with ALI/ARDS. Intensive Care Med. 2011;37:1510–1516. doi: 10.1007/s00134-011-2308-z
- Rimensberger PC, Cheifetz IM. Pediatric Acute Lung Injury Consensus Conference Group. Ventilatory support in children with pediatric acute respiratory distress syndrome: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16(1):S51–60. doi: 10.1097/PCC.0000000000000433
- Khemani RG, Smith LS, Zimmerman JJ, et al. Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;5(1):S23–40. doi: 10.1097/PCC.0000000000000432
- Kneyber MCJ, de Luca D, Calderini E, et al. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC). Intensive Care Med. 2017;43(12):1764–1780. doi: 10.1007/s00134-017-4920-z
- Aleksandrovich JS, Pshenisnov KV. Respiratornaja podderzhka pri kriticheskih sostojanijah v pediatrii i neonatologii (rukovodstvo dlja vrachej). M.: GJeOTAR-Media, 2020. 272 p. (In Russ.)
- Lebedinskij KM, Mazurok VA, Nefedov AV. Osnovy respiratornoj podderzhki. Saint Petersburg: Chelovek, 2008. 208 p. (In Russ.)
- Newth CJ, Rachman B, Patel N, et al. The use of cuffed versus uncuffed endotracheal tubes in pediatric intensive care. J Pediatr. 2004;144(3):333–337. doi: 10.1016/j.jpeds.2003.12.018
- Weiss M, Dullenkopf A, Fischer JE, et al. European Paediatric Endotracheal Intubation Study Group: Prospective randomized controlled multi-centre trial of cuffed or uncuffed endotracheal tubes in small children. Br J Anaesth. 2009;103(6):867–873. doi: 10.1093/bja/aep290
- Topjian AA, Raymond TT, Atkins D, et al. Part 4: Pediatric Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2020;142(16,2):S469–S523. doi: 10.1161/CIR.0000000000000918
- Abdelsalam M, Cheifetz IM. Goal-directed therapy for severely hypoxic patients with acute respiratory distress syndrome: Permissive hypoxemia. Respir Care. 2010;55(11):1483–1490.
- Randolph AG. Management of acute lung injury and acute respiratory distress syndrome in children. Crit Care Med. 2009;37(8):2448–2454. doi: 10.1097/CCM.0b013e3181aee5dd
- Santini A, Protti A, Langer T, et al. Prone position ameliorates lung elastance and increases functional residual capacity independently from lung recruitment. Int Care Med Exp. 2015;3:55. doi: 10.1186/s40635-015-0055-0
- Macrae DJ, Field D, Mercier JC, et al. Inhaled nitric oxide therapy in neonates and children: reaching a European consensus. Intensive Care Med. 2004;30:372–380. doi: 10.1007/s00134-003-2122-3
- National Heart, Lung and Blood Institute PETAL Clinical Trials Network, et al. Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome. N Engl J Med. 2019;380(21):1997–2008. doi: 10.1056/NEJMoa1901686
- Mikhailov TA, Kuhn EM, Manzi J, et al. Early enteral nutrition is associated with lower mortality in critically ill children. JPEN J Parenter Enteral Nutr. 2014;38(4):459–466. doi: 10.1177/0148607113517903
- Prakash V, Parameswaran N, Biswal N. Early versus late enteral feeding in critically ill children: a randomized controlled trial. Int Care Med. 2016;42:481–482. doi: 10.1007/s00134-015-4176-4
- Manaf AZ, Kassim N, Hamzaid NH, Razali NH. Delivery of enteral nutrition for critically ill children. Nutr Diet. 2013;70:120–125. doi: 10.1111/1747-0080.12007
- Bagci S, Keles E, Girgin F, et al. Early initiated feeding versus early reached target enteral nutrition in critically ill children: an observational study in pediatric intensive care units in Turkey. J Paediatr Child Health. 2018;54:480–486. doi: 10.1111/jpc.13810
- Mikhailov TA, Gertz SJ, Kuhn EM, et al. Early enteral nutrition is associated with signifcantly lower hospital charges in critically ill children. JPEN J Parenter Enter Nutr. 2018;42:920–925. doi: 10.1002/jpen.1025
- Carpenito KR, Prusinski R, Kirchner K, et al. Results of a feeding protocol in patients undergoing the hybrid procedure. Pediatr Cardiol. 2016;37:852–859. doi: 10.1007/s00246-016-1359-x
- Lekmanov AU, Erpuleva JV. Rannee jenteral’noe pitanie pri kriticheskih sostojanijah u detej. Annals of Critical Care. 2012;(3):53–55. (In Russ.)
- Mehta NM, Bechard LJ, Zurakowski D, et al. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: a multicenter, prospective, cohort study. Am J Clin Nutr. 2015;102(1):199–206. doi: 10.3945/ajcn.114.104893
- Jotterand CC, Laure DJ, Longchamp D, et al. How much protein and energy are needed to equilibrate nitrogen and energy balances in ventilated critically ill children? Clin Nutr. 2016;35(2):60–467. doi: 10.1016/j.clnu.2015.03.015
- Wong JJ, Han WM, Sultana R, et al. Nutrition delivery affects outcomes in pediatric acute respiratory distress syndrome. JPEN J Parenter Enteral Nutr. 2017;41(6):1007–1013. doi: 10.1177/0148607116637937
- Rajalakshmi I, Arun B. What do we know about optimal nutritional strategies in children with pediatric acute respiratory distress syndrome? Ann Transl Med. 2019;7(19):510–518. doi: 10.21037/atm.2019.08.25
- Panchal AK, Manzi J, Connolly S, et al. Safety of enteral feedings in critically ill children receiving vasoactive agents. JPEN J Parenter Enter Nutr. 2016;40(2):236–241. doi: 10.1177/0148607114546533
- King W, Petrillo T, Pettignano R. Enteral nutrition and cardiovascular medications in the pediatric intensive care unit. JPEN J Parenter Enteral Nutr. 2004;28(5):334–338. doi: 10.1177/0148607104028005334
- López-Herce J, Santiago MJ, Sánchez C, et al. Risk factors for gastrointestinal complications in critically ill children with transpyloric enteral nutrition. Eur J Clin Nutr. 2008;62:395–400. doi: 10.1038/sj.ejcn.1602710
- Mehta N.M. Feeding the Gut During Critical Illness — It Is About Time. JPEN J Parenter Enteral Nutr May. 2014;38(4):410–414. doi: 10.1177/0148607114522489
- Shmakov AN, Aleksandrovich YuS, Stepanenko SM. Protocol. Nutrition therapy of critically ill children. Anesthesiology-resuscitation. 2017;62(1):14–23. (In Russ.) doi: 10.18821/0201-7563-2017-62-1-14-23
- Meyer R, Harrison S, Sargent S, et al. The impact of enteral feeding protocols on nutritional support in critically ill children. J Hum Nutr Diet. 2009;22(5):428–436. doi: 10.1111/j.1365-277X.2009.00994.x
- Petrillo-Albarano T, Pettignano R, Asfaw M, et al. Use of a feeding protocol to improve nutritional support through early, aggressive, enteral nutrition in the pediatric intensive care unit. Pediatr Crit Care Med. 2006;7(4):340–344. doi: 10.1097/01.PCC.0000225371.10446.8F
- Yoshimura S, Miyazu M, Yoshizawa S, et al. Efficacy of an enteral feeding protocol for providing nutritional support after paediatric cardiac surgery. Anaesth Intensive Care. 2015;43(5):587–593. doi: 10.1177/0310057X1504300506
- Hamilton S, McAleer DM, Ariagno K, et al. A stepwise enteral nutrition algorithm for critically ill children helps achieve nutrient delivery goals. Pediatr Crit Care Med. 2014;15(7):583–589. doi: 10.1097/PCC.0000000000000179
- López-Herce J, Mencía S, Sánchez C, et al. Postpyloric enteral nutrition in the critically ill child with shock: a prospective observational study. Nutr J. 2008;7:6. doi: 10.1186/1475-2891-7-6
- Sonmez DD, Yildiz S. Effect of two different feeding methods on preventing ventilator associated pneumonia in the pediatric intensive care unit (PICU): a randomised controlled study. Aust Crit Care. 2016;29:139–145. doi: 10.1016/j.aucc.2015.11.001
- Lekmanov AU, Ryzhov EA, Erpuljova JV, Rossaus PA. The experience of enteral feeding with nasojejunal tube in children in critical state. Anesthesiology-resuscitation. 2012;(1):41–43. (In Russ.)
- Meert KL, Daphtary KM, Metheny NA. Gastric vs small-bowel feeding in critically ill children receiving mechanical ventilation: a randomized controlled trial. Chest. 2004;126(3):872–878. doi: 10.1378/chest.126.3.872
- Kamat P, Favaloro-Sabatier J, Rogers K, Stockwell JA. Use of methylene blue spectrophotometry to detect subclinical aspiration in enterally fed intubated pediatric patients. Pediatr Crit Care Med. 2008;9(3):299–303. doi: 10.1097/PCC.0b013e318172d500
- Mehta NM, Bechard LJ, Zurakowski D, et al. Heyland Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: a multicenter, prospective, cohort study. Am J Clin Nutr. 2015;102(1):199–206.
- Fivez T, Kerklaan D, Mesotten D, et al. Early versus late parenteral nutrition in critically ill children. N Engl J Med. 2016;374:1111–1122. doi: 10.1056/NEJMoa1514762
- Koletzko B, Bhatia J, Bhutta Z, et al. Pediatric Nutrition in Practice, 2nd, revised edition. Basel: Karger, 2015. doi: 10.1159/isbn.978-3-318-02691-7
- Koletzko B, Goulet O, Hunt J, et al. 1. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr. 2005;41(2):S1–S87
- Koletzko B, Goulet O, Sobotka L, editors. Nutritional support in infants, children and adolescents. Basics in Clinical Nutrition, ed 4. Prague: Gelén, 2011. 625–653 pp.
- Ista E, Joosten K. Nutritional assessment and enteral support of critically ill children. Crit Care Nurs Clin North Am. 2005;17(4):385–393. doi: 10.1016/j.ccell.2005.07.011
- de Menezes FS, Leite HP, Nogueira PC. What are the factors that influence the attainment of satisfactory energy intake in pediatric intensive care unit patients receiving enteral or parenteral nutrition? Nutrition. 2013;29(1):76–80. doi: 10.1016/j.nut.2012.04.003
- Nilesh MM. Parenteral Nutrition in Critically Ill Children. N Engl J Med. 2016;374:1190–1192. doi: 10.1056/NEJMe1601140
- Lekmanov AU, Erpuleva YV, Suvorov SG. Practice of clinical nutrition in pediatric intensive care units: results of the «Nutriped-2015» research. Anesthesiology-resuscitation. 2016;61(5):376–380. (In Russ.) doi: 10.18821/0201-7563-2016-61-5-376-380
- Goulet O, Jochum F, Koletzko B. Early or Late Parenteral Nutrition in Critically Ill Children: Practical Implications of the PEPaNIC Trial. Ann Nutr Metab. 2017;70:34–38. doi: 10.1159/000455336
- Koletzko B, Goulet O, Jochum F, Shamir R. Use of parenteral nutrition in the pediatric ICU: should we panic because of PEPaNIC? Curr Opin Clin Nutr Metab Care. 2017;20(3):201–203. doi: 10.1097/MCO.0000000000000371
- Peters MJ, Argent A, Festa M, et al. The intensive care medicine clinical research agenda in paediatrics. Int Care Med. 2017;43(9):1210–1224. doi: 10.1007/s00134-017-4729-9
- Nilesh NM, Skillman HE, Irving SY, et al. Goday, and Carol Braunschweig Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Pediatric Critically Ill Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. JPEN J Parenter Enteral Nutr. 2017;41(5):706–742. doi: 10.1177/0148607117711387
- Kawai Y, Cornell TT, Cooley EG, et al. Therapeutic Plasma Exchange May Improve Hemodynamics and Organ Failure Among Children With Sepsis-Induced Multiple Organ Dysfunction Syndrome Receiving Extracorporeal Life Support. Pediatr Crit Care Med. 2015;16(4):366–374. doi: 10.1097/PCC.0000000000000351
- Stahl K, Bikker R, Seeliger B, et al. Effect of Therapeutic Plasma Exchange on Immunoglobulin Deficiency in Early and Severe Septic Shock. J Int Care Med. 2020:088506662096516. doi: 10.1177/0885066620965169
- Rimmer E, Houston BL, Kumar A, et al. The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit Care. 2014;18(6):699. doi: 10.1186/s13054-014-0699-2
- Putzu A, Schorer R, Lopez-Delgado JC, et al. Blood Purification and Mortality in Sepsis and Septic Shock. Anesthesiology. 2019;131(3):580–593. doi: 10.1097/ALN.0000000000002820
- Long EJ, Taylor A, Delzoppo C, et al. A randomised controlled trial of plasma filtration in severe paediatric sepsis. Crit Care Resusc. 2013;15(3):198–204
- Keith PD, Wells AH, Hodges J, et al. The therapeutic efficacy of adjunct therapeutic plasma exchange for septic shock with multiple organ failure: a single-center experience. Critical Care. 2020;24(1):518. doi: 10.1186/s13054-020-03241-6
- Knaup H, Stahl K, Schmidt BMW, et al. Early therapeutic plasma exchange in septic shock: a prospective open-label nonrandomized pilot study focusing on safety, hemodynamics, vascular barrier function, and biologic markers. Critical Care. 2018;22(1):285. doi: 10.1186/s13054-018-2220-9
- Snow TAC, Littlewood S, Corredor C, et al. Effect of Extracorporeal Blood Purification on Mortality in Sepsis: A Meta-Analysis and Trial Sequential Analysis. Blood Purification. 2020:1–11. doi: 10.1159/000510982
- Weiss SL, Peters MJ, Alhazzani W, et al. Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatr Crit Care Med. 2020;21(2):e52–e106. doi: 10.1097/pcc.0000000000002198
- Fayad AII, Buamscha DG, Ziapponi A. Timing of renal replacement therapy initiation for acute kidney injury. Meta-Analysis Cochrane Database Syst Rev. 2018;12(12):CD010612. doi: 10.1002/14651858.CD010612.pub2
- Guzzo I, de Galasso L, Mir S, et al. Acute dialysis in children: results of a European survey. J Nephrol. 2019;32(3):445–451. doi: 10.1007/s40620-019-00606-1
- Guo XH, Sun YF, Han SZ, et al. Continuous blood purification in children with severe sepsis. Randomized Controlled Trial. J Biol Regul Homeost Agents. 2017;31(2):389–394.
- Yarustovsky МB, Abramyan MV, Soldatkina AO, et al. Preliminary report regarding the use of LPS-adsorption in complex intensive therapy for children with gram-negative sepsis after heart surgery. Anesthesiology-resuscitation. 2017;62(5):376–381. (In Russ.)
- Maede Y, Ibara S, Tokuhisa T, et al. Polymyxin B-immobilized fiber column direct hemoperfusion and continuous hemodiafiltration in premature neonates with systemic inflammatory response syndrome. Pediatr Int. 2016;58(1):1176–1182. doi: 10.1111/ped.13006
- Nishizaki N, Hara T, Obinata K, et al. Clinical Effects and Outcomes After Polymyxin B–Immobilized Fiber Column Direct Hemoperfusion Treatment for Septic Shock in Preterm Neonates. Pediatr Crit Care Med. 2020;21(2):156–163. doi: 10.1097/pcc.0000000000002132
- Ankawi G, Neri M, Zhang J, et al. Extracorporeal techniques for the treatment of critically ill patients with sepsis beyond conventional blood purification therapy: the promises and the pitfalls. Crit Care. 2018;22(1). doi: 10.1186/s13054-018-2181-z
- Venkatesh B, Finfer S, Cohen J, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med. 2018;378(9):797–808. doi: 10.1056/NEJMoa1705835
- Annane D, Renault A, Brun-Buisson C, et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med. 2018;378(9):809–818. doi: 10.1056/NEJMoa1705716
- Rochwerg B, Oczkowski SJ, Siemieniuk RAC, Corticosteroids in sepsis: an updated systematic review and meta-analysis. Crit Care Med. 2018;46(9):1411–1420. doi: 10.1097/CCM.0000000000003262
- Wong HR, Cvijanovich NZ, Anas N, et al. Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am J Respir Crit Care Med. 2015;191(3):309–315. doi: 10.1164/rccm.201410-1864OC
- Agus MS, Wypij D, Hirshberg EL, et al. Tight glycemic control in critically ill children. N Engl J Med. 2017;376(8):729–741. doi: 10.1056/NEJMoa1612348
- Macrae D, Grieve R, Allen E, et al. A randomized trial of hyperglycemic control in pediatric intensive care. N Engl J Med. 2014;370(2):107–118. doi: 10.1056/NEJMoa1302564
- Dotson B, Larabell P, Patel JU, et al. Calcium administration is associated with adverse outcomes in critically ill patients receiving parenteral nutrition: results from a natural experiment created by a calcium gluconate shortage. Pharmacotherapy. 2016;36(11):1185–1190. doi: 10.1002/phar.1849
- Dias CR, Leite HP, Nogueira PC, et al. Ionized hypocalcemia is an early event and is associated with organ dysfunction in children admitted to the intensive care unit. J Crit Care. 2013;28(5):810–815. doi: 10.1016/j.jcrc.2013.03.019
- Karam O, Tucci M, Ducruet T, et al. Red blood cell transfusion thresholds in pediatric patients with sepsis. Pediatr Crit Care Med. 2011;12(5):512–518. doi: 10.1097/PCC.0b013e3181fe344b
- Hébert PC, Wells G, Blajchman MA, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion requirements in critical care investigators, canadian critical care trials group. N Engl J Med. 1999;340(6):409–417. doi: 10.1056/NEJM199902113400601
- Prikaz Ministerstva zdravoohranenija Rossijskoj Federacii (Minzdrav Rossii) ot 2 aprelja 2013 g. Nо. 183n «Ob utverzhdenii pravil klinicheskogo ispol’zovanija donorskoj krovi i (ili) ee komponentov». Moscow, 2013.
- Yang L, Stanworth S, Hopewell S, et al. Is fresh-frozen plasma clinically effective? An update of a systematic review of randomized controlled trials. Transfusion. 2012;52(8):1673–1686; quiz 1673. doi: 10.1111/j.1537-2995.2011.03515.x
- Karam O, Lacroix J, Robitaille N, et al. Association between plasma transfusions and clinical outcome in critically ill children: a prospective observational study. Vox Sang. 2013;104(4):342–349. doi: 10.1111/vox.12009
- Du Pont-Thibodeau G, Tucci M, Robitaille N, et al. Platelet transfusions in pediatric intensive care. Pediatr Crit Care Med. 2016;17(9):e420–е429. doi: 10.1097/PCC.0000000000000879
- Kreymann KG, de Heer G, Nierhaus A, Kluge S. Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit Care Med. 2007;35(120):2677–2685. doi: 10.1097/00003246-200712000-00001
- Kakoullis L, Pantzaris ND, Platanaki C, et al. The use of IgM-enriched immunoglobulin in adult patients with sepsis. J Crit Care. 2018;47:30–35. doi: 10.1016/j.jcrc.2018.06.005
- Cui J, Wei X, Lv H, et al. The clinical efficacy of intravenous IgM-enriched immunoglobulin (pentaglobin) in sepsis or septic shock: a meta-analysis with trial sequential analysis. Ann Intensive Care. 2019;9(1):27. doi: 10.1186/s13613-019-0501-3
- Aukrust P, Frøland SS, Liabakk NB, et al. Release of cytokines, soluble cytokine receptors, and interleukin-1 receptor antagonist after intravenous immunoglobulin administration in vivo. Blood. 1994;84(7):2136–2143. doi: 10.1182/blood.V84.7.2136.2136
- Rieben R, Roos A, Muizert Y, et al. Immunoglobulin M-enriched human intravenous immunoglobulin prevents complement activation in vitro and in vivo in a rat model of acute inflammation. Blood. 1999;93(3):942–951. doi: 10.1182/blood.V93.3.942
- Bermejo-Martín JF, Rodriguez-Fernandez A, Herrán-Monge R, et al. GRECIA Group (Grupo de Estudios y Análisis en Cuidados Intensivos). Immunoglobulins IgG1, IgM and IgA: a synergistic team influencing survival in sepsis. J Intern Med. 2014;276(4):404–412. doi: 10.1111/joim.12265
- Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260–268. doi: 10.1016/S1473-3099(13)70001
- Alejandria MM, Lansang MA, Dans LF, Mantaring JB. 3rd. Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock. Cochrane Database Syst Rev. 2013;(9):CD001090. doi: 10.1002/14651858.CD001090.pub2
- El-Nawawy A, El-Kinany H, Hamdy El-Sayed M, et al. Intravenous polyclonal immunoglobulin administration to sepsis syndrome patients: A prospective study in a pediatric intensive care unit. J Trop Pediatr. 2005;51(5):271–278. doi: 10.1093/tropej/fmi011
- Beloborodova NV, Popov DA, Shatalov KV, et al. Zamestitel’naja immunoterapija pod kontrolem testa na prokal’citonin — novyj podhod k preduprezhdeniju manifestacii infekcii v posleoperacionnom periode u detej so slozhnymi vrozhdennymi porokami serdca. Heart and Vessels Diseases in Children. 2005;3:62–68. (In Russ.)
- Popov D, Yaroustovsky M, Lobacheva G. Prevention of infectious complications after heart surgery in children: procalcitonin-guided strategy. Kardiochir Torakochirurgia Pol. 2014;11(2):140–44. doi: 10.5114/kitp.2014.43840
- Kola E, Çelaj E, Bakalli I, et al. Efficacy of an IgM preparation in the treatment of patients with sepsis: a double-blind randomized clinical trial in a pediatric intensive care unit (Original research). SEEJPH. 2014;40(1):278. doi: 10.12908/SEEJPH2014-04
- Abdullayev E, Kilic O, Bozan G, et al. Clinical, laboratory features and prognosis of children receiving IgM-enriched immunoglobulin (3 days vs. 5 days) as adjuvant treatment for serious infectious disease in pediatric intensive care unit: a retrospective single-center experience (PIGMENT study). Human Vaccines & Immunotherapeutics. 2020;16(8):1997–2002. doi: 10.1080/21645515.2019.1711298
- Berlot G, Vassallo MC, Busetto N, et al. Relationship between the timing of administration of IgM and IgA enriched immunoglobulins in patients with severe sepsis and septic shock and the outcome: a retrospective analysis. J Crit Care. 2012;27(2):167–171. doi: 10.1016/j.jcrc.2011.05.012
- De Rosa FG, Corcione S, Tascini C, et al. A position paper on IgM-enriched intravenous immunoglobulin adjunctive therapy in severe acute bacterial infections: the TO-PIRO SCORE proposal. New Microbiol. 2019;42(3):176–180.
- Ponnarmeni S, Angurana SK, Singhi S, et al. Vitamin D deficiency in critically ill children with sepsis. Paediatr Int Child Health. 2016;36:15–21. doi: 10.1080/20469047.2015.1109274
- Reveiz L, Guerrero-Lozano R, Camacho A, et al: Stress ulcer, gastritis, and gastrointestinal bleeding prophylaxis in critically ill pediatric patients: A systematic review. Pediatr Crit Care Med. 2010;11(1):124–132. doi: 10.1097/PCC.0b013e3181b80e70
- Jimenez J, Drees M, Loveridge-Lenza B, et al. Exposure to gastric acid-suppression therapy is associated with health care- and community-associated Clostridium difficile infection in children. J Pediatr Gastroenterol Nutr. 2015;61(2):208–211. doi: 10.1097/MPG.0000000000000790
- Cook D, Heyland D, Griffith L, et al. Risk factors for clinically important upper gastrointestinal bleeding in patients requiring mechanical ventilation. Canadian Critical Care Trials Group. Crit Care Med. 1999;27(12):2812–2817. doi: 10.1097/00003246-199912000-00034
- Duerksen DR. Stress-related mucosal disease in critically ill patients. Best Pract Res Clin Gastroenterol. 2003;17(3):327–344. doi: 10.1016/S1521-6918(03)00028-3
- Massicotte P, Julian JA, Gent M, et al. PROTEKT Study Group: An open-label randomized controlled trial of low molecular weight heparin for the prevention of central venous line-related thrombotic complications in children: The PROTEKT trial. Thromb Res. 2003;109(2-3):101–108. doi: 10.1016/S0049-3848(03)00099-9
- Epifanov VA, Jushhuk ND, Epifanov AV. Mediko-social’naja reabilitacija posle infekcionnyh zabolevanij. M.: GJeOTAR-Media, 2020. 560 p. (In Russ.)
- Karpov IA, Gorbich JL, Kulagin AE, et al. Sepsis: diagnostika, principy antimikrobnoj i podderzhivajushhej terapii (uchebno-metodicheskoe posobie). Minsk: BGMU, 2019. 28 p. (In Russ.)
- Seymour CW, Wiersinga WJ, editors. Handbook of sepsis. Springer, 2018. 268 p. doi: 10.1007/978-3-319-73506-1.
- Odetola FO, Gebremariam A. Transfer hospitalizations for pediatric severe sepsis or septic shock: resource use and outcomes. BMC Pediatr. 2019;19(1):196. doi: 10.1186/s12887-019-1577-5.
Дополнительные файлы
