OCCURRENCE OF SMALL HOMOLOGOUS AND COMPLEMENTARY FRAGMENTS IN HUMAN VIRUS GENOMES AND THEIR POSSIBLE ROLE

Cover Page

Cite item

Full Text

Abstract

With computer analysis occurrence of small homologous and complementary fragments (21 nucleotides in length) has been studied in genomes of 14 human viruses causing most dangerous infections. The sample includes viruses with (+) and (–) single stranded RNA and DNA-containing hepatitis A virus. Analysis of occurrence of homologous sequences has shown the existence two extreme situations. On the one hand, the same virus contains homologous sequences to almost all other viruses (for example, Ebola virus, severe acute respiratory syndrome-related coronavirus, and mumps virus), and numerous homologous sequences to the same other virus (especially in severe acute respiratory syndrome-related coronavirus to Dengue virus and in Ebola virus to poliovirus). On the other hand, there are rare occurrence and not numerous homologous sequences in genomes of other viruses (rubella virus, hepatitis A virus, and hepatitis B virus). Similar situation exists for occurrence of complementary sequences. Rubella virus, the genome of which has the high content of guanine and cytosine, has no complementary sequences to almost all other viruses. Most viruses have moderate level of occurrence for homologous and complementary sequences. Autocomplementary sequences are numerous in most viruses and one may suggest that the genome of single stranded RNA viruses has branched secondary structure. In addition to possible role in recombination among strains autocomplementary sequences could be regulators of translation rate of virus proteins and determine its optimal proportion in virion assembly with genome and mRNA folding. Occurrence of small homologous and complementary sequences in RNA- and DNA-containing viruses may be the result of multiple recombinations in the past and the present and determine their adaptation and variability. Recombination may take place in coinfection of human and/or common hosts. Inclusion of homologous and complementary sequences into genome could not only renew viruses but also serve as memory of existence of a competitor for host and means of counteraction against a competitor in coinfection being an analogy of the bacterial CRISPR/Cas system.

 

About the authors

E. P. Kharchenko

I. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg

Author for correspondence.
Email: neuro.children@mail.ru
PhD, MD (Biology), Senior Researcher, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences Russian Federation

References

  1. Стент Г. Молекулярная биология вирусов и бактерий. М.: Мир, 1965. 467 с. [Stent G. Molekulyarnaya biologiya virusov i bakterii [Molecular biology of diruses and bacteria]. Moscow: Mir, 1965. 467 p.]
  2. Харченко Е.П. Возможные коллизии в иммунодиагностике вирусных инфекций и вакцинации // Инфекция и иммунитет. 2016. Т. 6, № 2. С. 157–164. [Kharchenko E.P. Immune epitope continuum of the protein relationships, poly- and autoreactivity of antibodies. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2016, vol. 6, no. 2, pp. 157–164. doi: 10.15789/2220-7619-20162-157-164 (In Russ.)]
  3. Харченко Е.П. Иммуноэпитопный континуум родства белков и полиреактивность и аутореактивность антител // Медицинская иммунология. 2015. Т. 17, № 4. C. 335–346. [Kharchenko E.P. Immune epitope continuum of the protein relationships, poly- and autoreactivity of antibodies. Meditsinskaya Immunologiya = Medical Immunology (Russia), 2015, vol. 17, no. 4, pp. 335–346. doi: 10.15789/1563-0625-2015-4-335-346 (In Russ.)]
  4. Aguiar E.R., Olmo R.P., Marques J.T. Virus-derived small RNAs: molecular footprints of host–pathogen interactions. Wiley Interdiscip. Rev. RNA, 2016, vol. 7, iss. 6, pp. 824–837. doi: 10.1002/wrna.1361
  5. Barrangou R. CRISPR-Cas systems and RNA-guided interference. Wiley Interdiscip. Rev. RNA, 2013, vol. 4, iss. 3, pp. 267–278. doi: 10.1002/wrna.1159
  6. Gil A., Kenney L.L., Mishra R., Watkin L.B., Aslan N., Selin L.K. Vaccination and heterologous immunity: educating the immune system. Trans. R. Soc. Trop. Med. Hyg., 2015, vol. 109, no. 1, pp. 62–69. doi: 10.1093/trstmh/tru198
  7. Heler R., Marraffini L.A., Bikard D. Adapting to new threats: the generation of memory by CRISPR-Cas immune systems. Mol. Microbiol., 2014, vol. 93, iss. 1, pp. 1–9. doi: 10.1111/mmi.12640
  8. Jachiet P.A., Colson P., Lopez P., Bapteste E. Extensive gene remodeling in the viral world: new evidence for nongradual evolution in the mobilome network. Genome Biol. Evol., 2014, vol. 6, iss. 9, pp. 2195–2205. doi: 10.1093/gbe/evu168
  9. Keele B.F., Giorgi E.E., Salazar-Gonzalez J.F., Decker J.M., Pham K.T., Salazar M.G., Sun C., Grayson T., Wang S., Li H., Wei X., Jiang C., Kirchherr J., Gao F., Anderson J., Ping L., Swanstrom R., Tomaras G., Blattner W., Goepfert P., Kilby J., Saag M., Delwart E., Busch M., Cohen M., Montefiori D., Haynes B., Gaschen B., Athreya G., Lee H., Wood N., Seoighe C., Perelson A., Bhattacharya T., Korber B.T., Hahn B., Shaw G. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 21, pp. 7552–7557. doi: 10.1073/pnas.0802203105
  10. Koonin E., Dolja V., Krupovic M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology, 2015, vol. 479–480, pp. 2–25. doi: 10.1016/j.virol.2015.02.039
  11. Li M.L., Weng K.F., Shih S.R., Brewer G. The evolving world of small RNAs from RNA viruses. Wiley Interdiscip. Rev. RNA, 2016, vol. 7, iss. 5, pp. 575–588. doi: 10.1002/wrna.1351
  12. Nakanishi K. Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip. Rev. RNA, 2016, vol. 7, iss. 5, pp. 637–660. doi: 10.1002/wrna.1356
  13. Perez J.T., Zlatev I., Aggarwal S., Subramanian S., Sachidanandam R., Kim B., Manoharan M., ten Oever B.R. A small-RNA enhancer of viral polymerase activity. J. Virol., 2012, vol. 86, no. 24, pp. 13475–13485. doi: 10.1128/JVI.02295-12
  14. Perez J.T., Varble A., Sachidanandam R., Zlatev I., Manoharan M., Garcia-Sastre A., ten Oever B.R. Influenza A virus-generated small RNAs regulate the switch from transcription to replication. Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 25, pp. 11525– 11530. doi: 10.1073/pnas.1001984107
  15. Romanova L.I., Blinov V.M., Tolskaya E.A., Viktorova E.G., Kolesnikova M.S., Guseva E.A., Agol V.I. The primary structure of crossover regions of intertypic poliovirus recombinants: a model of recombination between RNA genomes. Virology, 1986, vol. 155, no. 1, pp. 202–213.
  16. Selin L.K., Wlodarczyk M.F., Kraft A.R., Nie S., Kenney L.L., Puzone R., Celada F. Heterologous immunity: immunopathology, autoimmunity and protection during viral infections. Autoimmunity, 2011, vol. 44, pp. 328–347.
  17. Stedman K.M. Deep recombination: RNA and ssDNA virus genes in DNA virus and host genomes. Annu. Rev. Virol., 2015, vol. 2, pp. 203–217. doi: 10.1146/annurev-virology-100114-055127
  18. Tay Y., Rinn J., Pandolfi P.P. The multilayered complexity of ceRNA crosstalk and competition. Nature, 2014, vol. 505, no. 7483, pp. 344–352. doi: 10.1038/nature12986
  19. Tycowski K.T., Guo Y., Lee N., Moss W.N., Vallery T.K., Xie M., Steitz J.A. Viral noncoding RNAs: more surprises. Genes. Dev., 2015, vol. 29, pp. 567–584.
  20. Umbach J.L., Yen H.L., Poon L.L., Cullen B.R. Influenza A virus expresses high levels of an unusual class of small viral leader RNAs in infected cells. MBio, 2010, vol. 1, no. 4: e00204-10. doi: 10.1128/mBio.00204-10

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Kharchenko E.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».