Hexon-based scaffold for generation of diagnostic monoclonal antibodies against diverse adenovirus types

Cover Page

Cite item

Full Text

Abstract

Infectious diseases hold one of the most crucial places in healthcare. In Russia, annual prevalence of infectious diseases comprises around 50 million cases, wherein acute respiratory viral infections cover up to 90%. In non-influenza (non-peak) season, adenoviruses, respiratory syncytial virus, parainfluenza viruses etc. represent the main infectious cause of acute respiratory viral infections. Adenovirus-induced infections are characterized by heterogeneous manifestations poising them both as an interesting challenge, yet difficult in clinical diagnostics. Use of rapid, sensitive and specific tests is of high priority for routine clinical laboratory practice. In Russia, differential diagnostics of adenoviral infections includes a widely used ELISA and immunofluorescence analysis based on polyclonal specific sera. Importantly, a pattern and range of specific reactions depend on origin of animal-derived antibodies and their composition. Introduction of monoclonal antibodies specific to certain viral antigenic epitopes ensures high sensitivity and specificity allowing to reach an expected standardization level for such diagnostic products. Adenovirus hexon protein bears genus-specific antigens and relatively conserved amino acid sequence among diverse adenoviruses. Moreover, it is produced at high amount in infected cells and may be purified in a native form. Moreover, it is produced at high amount in infected cells and may be purified in a native form, thereby posing it as a promising antigen for producing monoclonal antibodies able to detect various adenoviruses types. A panel of adenovirus hexon-specific monoclonal antibodies was generated, which were further examined for biological and diagnostics properties. Western blotting data allowed to conclude that all of monoclonal antibodies generated by us were able to bind to adenovirus hexon oligomers. Specific activity of the new monoclonal antibodies against various adenovirus types was examined by ELISA and indirect immunofluorescence assay. In particular, monoclonal antibodies 4B7 and 6B12 were shown display top specific activity measured by ELISA (antibody titers comprised as high as 10–6). Moreover, monoclonal antibody 6B12 exhibited peak hexon-specific activity assessed in indirect immunofluorescence assay (against various adenovirus types), which resulted in prominent granular nuclear fluorescence in cells infected with adenovirus types 3, 4, 6, and 19. Thus, the data obtained evidence that monoclonal antibodies developed 4B7 and 6B12 maybe potentially used for developing high-quality adenovirus-specific diagnostic assays.

About the authors

T. A. Timoshicheva

Smorodintsev Research Institute of Influenza of the Ministry of Healthcare

Email: tatianatim@mail.ru

Timoshicheva Tatyana Aleksandrovna - Junior Researcher, Biotechnology Laboratory of Diagnostic Products, Smorodintsev Research Institute of Influenza Ministry of Healthcare.

117997, St. Petersburg, prof. Popov str., 15/17.

Phone: +7 (812) 499-15-84.

Russian Federation

Ya. A. Zabrodskaya

Smorodintsev Research Institute of Influenza of the Ministry of Healthcare; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov Institute”

Email: zabryaka@yandex.ru

Zabrodskaya Yana Aleksandrovna - Researcher, Laboratory of System Virology, Smorodintsev Research Institute of Influenza Ministry of Healthcare; Junior Researcher, Laboratory of Macromolecule Biophysics, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC Kurchatov Institute.

117997, St. Petersburg, prof. Popov str., 15/17.

Russian Federation

I. V. Amosova

Smorodintsev Research Institute of Influenza of the Ministry of Healthcare

Author for correspondence.
Email: amosova.23@mail.ru

Amosova Irina Victorovna - PhD (Biology), Senior Researcher, Biotechnology Laboratory of Diagnostic Products, Smorodintsev Research Institute of Influenza Ministry of Healthcare.

117997, St. Petersburg, prof. Popov str., 15/17.

Russian Federation

References

  1. Амосова И.В., Тимошичева Т.А., Егорова А.А., Мусаева Т.Д., Писарева М.М., Едер В.А., Львов Н.И. Генетическое разнообразие аденовирусов, циркулирующих среди военнослужащих Северо-Западного региона // Вопросы вирусологии. 2017. Т. 6, № 62. С. 283–287.
  2. Амосова И.В., Тимошичева Т.А., Сверлова М.В., Бузицкая Ж.В., Егорова А.А., Львов Н.И. Использование микрокультурального иммуноферментного анализа и модифицированного метода иммунофлуоресценции для диагностики аденовирусной инфекции // К линическая лабораторная диагностика. 2017. Т. 62, № 4. С. 230–235.
  3. Горностаева Ю.А., Романова Т.С. Актуальные вопросы профилактики респираторных инфекций // Медицинский совет. 2012. № 7. С. 98-103.
  4. Яцышина С.Б., Агеева М.Р., Воробьева Н.С., Валдохина А.В., Елькина М.А., Горелов А.В., Малеев В.В., Покровский В.И. А деновирусы в этиологической структуре острых респираторных вирусных инфекций в Москве в 2004–2014 гг. // Журнал микробиологии, эпидемиологии и иммунобиологии. 2015. № 5. С. 50–57.
  5. Candiano G., Bruschi M., Musante L., Santucci L., Ghiggeri G.M., Carnemolla B., Orecchia P., Zardi L., Righetti P.G. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, 2004, vol. 25, no. 9, pp. 1327–1333. doi: 10.1002/elps.200305844
  6. Chan C.E., Lim A.P., MacAry P.A., Hanson B.J. The role of phage display in therapeutic antibody discovery. Int. Immunol., 2014, vol. 26, no. 12, pp. 649–657. doi: 10.1093/intimm/dxu082
  7. Döhner L, Dieckmann U. Antigenic composition of adenovirus hexons. Acta Biol. Med. Ger., 1978, vol. 37, no. 11–12, pp. 1735–1740.
  8. Ebner K., Pinsker W., Lion T. Comparative sequence analysis of the hexon gene in the entire spectrum of human adenovirus serotypes: phylogenetic, taxonomic, and clinical implications. J. Virol., 2005, vol. 79, no. 20, pp. 12635–12642. doi: 10.1128/JVI.79.20.12635-12642.2005
  9. Fortsas E., Petric M., Brown M. Electrophoretic migration of adenovirus hexon under non-denaturing conditions. Virus Res., 1994, vol. 31, no. 1, pp. 57–65. doi: 10.1016/0168-1702(94)90071-X
  10. Irmen K.E., Kelleher J.J. Use of monoclonal antibodies for rapid diagnosis of respiratory viruses in a community hospital. Clin. Diagn. Lab. Immunol., 2000, vol. 7, no. 3, pp. 396–403. doi: 10.1128/CDLI.7.3.396-403.2000
  11. Khilko S.N., Kirasova M.A., Kiseleva E.K., Tikchonenko T.I. Comparison of adenoviral hexon polypeptides (monomers) and of native hexons (trimers) by SDS-polyacrylamide gel electrophoresis. Acta Microbiol. Hung., 1990, vol. 37, no. 2, pp. 233–245.
  12. Köhler G, Milstein C. Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur. J. Immunol., 1976, vol. 6, no. 7, pp. 511-519. doi: 10.1002/eji.1830060713
  13. Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, vol. 227, no. 5259, pp. 680 –685. doi: 10.1038/227680a0
  14. Magalhaes L.G., Ferreira L.L.G., Andricopulo A.D. Recent advances and perspectives in cancer drug design. An. Acad. Bras. Cienc., 2018, vol. 90, no. 1, suppl. 2, pp. 1233–1250. doi: 10.1590/0001-3765201820170823
  15. Målen H., Berven F.S., Fladmark K.E., Wiker H.G. Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics, 2007, vol. 7, no. 10, pp. 1702–1718. doi: 10.1002/pmic.200600853
  16. Nakane P.K., Kawaoi A. Peroxidase-labeled antibody. A new method of conjugation. J. Histochem. Cytochem., 1974, vol. 22, no. 12, pp. 1084–1091. doi: 10.1177/22.12.1084
  17. Orvell C. Structural polypeptides of mumps virus. J. Gen. Virol., 1978, vol. 41, no. 3, pp. 527–539. doi: 10.1099/0022-1317-41-3-527
  18. Pollack S.J., Jacobs J.W., Schultz P.G. Selective chemical catalysis by an antibody. Science, 1986, vol. 234, no. 4783, pp. 1570 –1573. doi: 10.1126/science.3787262
  19. Walter J.M., Wunderink R.G. Severe respiratory viral infections: new evidence and changing paradigms. Inf. Dis. Clin. North Am., 2017, vol. 31, no. 3, pp. 455–474. doi: 10.1016/j.idc.2017.05.004
  20. Zdanov K.V., Lvov N.I., Maltsev O.V. Peredelsky E.V., Pisareva M.M. Main aetiological features of acute respiratory viral diseases in young people of draft age and conscripts during the 2013–2014 epidemic season. Int. Rev. Arm. Forc. Med. Serv., 2016, vol. 89, no. 2, pp. 58–63.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Timoshicheva T.A., Zabrodskaya Y.A., Amosova I.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».