Features 2016–2018 current human influenza A(H3N2) viruses circulating in Russia

Cover Page

Cite item

Full Text

Abstract

Influenza A(H3N2) viruses demonstrate the highest level of evolutionary variability compared to other influenza viruses circulating in human population. The strains of this subtype affect a large number of people belonging to highrisk groups: children under three years of age, pregnant women, people over 65 years, medical professionals, and persons with chronic nervous, cardiovascular and respiratory diseases. Influenza A(H3N2) viruses result in high mortality rate in subjects over 65 years causing the most severe course, accompanied by serious complications. Here, we present the data on analyzing antigenic and biological properties of human influenza A(H3N2) viruses which circulated in 2016–2018 epidemic seasons in Russia. The data on the neuraminidase activity (MUNANA test) of recent influenza A(H3N2) viruses isolated on MDCK and MDCK-Siat1 cell cultures are presented to compare with NA sequencing data in order to assess possible influence of the isolation system on NA activity. Due to changes in virus receptor properties, a choice of optimal isolation conditions is of high importance. The WHO recommended cell cultures differing in receptor properties were used. Efficiency of virus isolation on MDCK and MDCK-Siat1 cell lines was also analyzed. It has been established that the efficiency of influenza A(H3N2) virus isolation in MDCK-Siat1 cell culture was 77.3%, whereas in MDCK — 71.3%. It was shown that the majority of isolated strains (68.6% in 2016–2017 and 44.6% in 2017–2018) exhibited a NA-induced erythrocyte agglutination. It was found that current A(H3N2) strains isolated in Russia displayed no significant antigenic differences regardless of cell cultures used; however, adaptive substitutions in neuraminidase may emerge. While studying antigenic properties of influenza A(H3N2) viruses by using the HI assay and the microneutralization assay (cell-ELISA), it was noted that the majority of strains isolated in the 2017–2018 epidemic season was antigenically related and interacted with antiserum against the reference strain A/Singapore/INFIMH-16–0019/2016 (MDCK-Siat1) at a homologous titer. According to the sequencing data, it was established that during the 2017–2018 epidemic season, viruses of subclade 3C.2a2, as well as 3C.2a3 and 3C.2a1b were detected in Russia. Thus, an increasing genetic heterogeneity of A(H3N2) viruses was revealed in Russia.

About the authors

P. A. Petrova

Smorodintsev Research Institute of Influenza

Author for correspondence.
Email: suddenkovapolina@gmail.com
ORCID iD: 0000-0001-8527-7946

Polina A. Petrova, Junior Researcher, Department of Evolutionary Variability of Influenza Viruses

197376, St. Petersburg, Professor Popov str., 15/17

Phone: +7 952 233-36-21 (mobile)

Russian Federation

N. I. Konovalova

Smorodintsev Research Institute of Influenza

Email: konovalova_nadya@mail.ru
ORCID iD: 0000-0002-7213-9306

PhD, Leading Researcher Assistant of the Laboratory of Evolutionary Variability of Influenza Viruses

St. Petersburg Russian Federation

A. D. Vassilieva

Smorodintsev Research Institute of Influenza

Email: nastasya_vasileva_94@mail.ru
ORCID iD: 0000-0001-6818-5548

Research Assistant of the Laboratory of Evolutionary Variability of Influenza Viruses

St. Petersburg Russian Federation

E. M. Eropkina

Smorodintsev Research Institute of Influenza

Email: elena.eropkina@gmail.com

PhD, Senior Researcher, Laboratory of Evolutionary Variability of Influenza Viruses

St. Petersburg Russian Federation

A. A. Ivanova

Smorodintsev Research Institute of Influenza

Email: anna_e_svobodniy@mail.ru

Junior Researcher, Laboratory of Molecular Virology

St. Petersburg Russian Federation

A. B. Komissarov

Smorodintsev Research Institute of Influenza

Email: a.b.komissarov@gmail.com

Head of the Laboratory of Molecular Virology

St. Petersburg Russian Federation

M. Yu. Eropkin

Smorodintsev Research Institute of Influenza

Email: mikhail.eropkin@influenza.spb.ru
ORCID iD: 0000-0002-3306-847X

PhD, Head of the Laboratory of Evolutionary Variability of Influenza Viruses

St. Petersburg Russian Federation

D. M. Danilenko

Smorodintsev Research Institute of Influenza

Email: daria.baibus@gmail.com
ORCID iD: 0000-0001-6174-0836

PhD, Deputy Director on Science, Head of Etiology and Epidemiology of Influenza and ARI Department

St. Petersburg Russian Federation

References

  1. Даниленко Д.М., Коновалова Н.И., Прокопец А.В., Бильданова Е.Р., Еропкин М.Ю., Соминина А.А. Возможности использования поликлональных крысиных антисывороток в антигенном анализе вирусов гриппа человека // Эпидемиология и вакцинопрофилактика. 2013. № 1 (68). С. 73–79.
  2. Australian Influenza Surveillance Report and Activity Updates – 2017.
  3. CDC: Influenza Activity in the United States During the 2017–18 Season and Composition of the 2018–19 Influenza Vaccine.
  4. Gulati S., Smith D.F., Cummings R.D., Couch R.B., Griesemer S.B., George K.S., Webster R.G., Air G.M. Human H3N2 influenza viruses isolated from 1968 to 2012 show varying reference for receptor substructures with no apparent consequences for disease or spread. PLoS One, 2013, vol. 8: 6. doi: 10.1371/journal.pone.0066325
  5. Koel B.F., Burke D.F., Bestebroer T.M., van der Vliet S., Zondag G.C., Vervaet G., Skepner E., Lewis N.S., Spronken M.I., Russell C.A., Eropkin M.Y., Hurt A.C., Barr I.G., de Jong J.C., Rimmelzwaan G.F., Osterhaus A.D., Fouchier R.A., Smith D.J. Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science, 2013, vol. 342, pp. 976–979. doi: 10.1126/science.1244730
  6. Lin Y., Gregory V., Collins P., Kloess J., Wharton S., Cattle N., Lackenby A., Daniels R., Hay A. Neuraminidase receptor binding variants of human influenza A (H3N2) viruses resulting from substitution of aspartic acid 151 in the catalytic site: a role in virus attachment? J. Virol., 2010, vol. 84, no. 13, pp. 6769–6781. doi: 10.1128/JVI.00458-10
  7. Lin Y., Wharton S.A., Whittaker L., Dai M., Ermetal B., Lo J., Pontoriero A., Baumeister E., Daniels R.S., McCauley J.W. The characteristics and antigenic properties of recently emerged subclade 3C.3a and 3C.2a human influenza A(H3N2) viruses passaged in MDCK cells. Influenza Other Respir. Viruses, 2017, vol. 11, no. 3, pp. 263–274. doi: 10.1111/irv.12447
  8. Lin Y., Xiong X., Wharton S.A., Martin S.R., Coombs P.J. Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin. Proc. Natl. Acad. Sci. USA, 2012, vol. 109, no. 52, pp. 21474–21479. doi: 10.1073/pnas.1218841110
  9. Manual for the laboratory diagnosis and virological surveillance of influenza. WHO Press, 2011.
  10. Matrosovich M., Matrosovich T., Carr J., Roberts N.A., Klenk H. Overexpression of the α-2,6-sialyltransferase in MDCK cells increases influenza virus sensitivity to neuraminidase inhibitors. J. Virol., 2003, vol. 77, no. 15, pp. 8418–8425. doi: 10.1128/JVI.77.15.8418-8425.2003
  11. Mohr P.G., Deng Y.M., McKimm-Breschkin J.L. The neuraminidases of MDCK grown human influenza A(H3N2) viruses isolated since 1994 can demonstrate receptor binding. Virology J., 2015, no. 12: 67. doi: 10.1186/s12985-015-0295-3
  12. Namura D, Nguyen H.T., Sleeman K., Levine M., Mishin V.P., Yang H., Guo Z., Okomo-Adhiambo M., Xu X., Stevens J., Gubareva L.V. Cell culture-selected substitutions in influenza A(H3N2) neuraminidase affect drug susceptibility assessment. Antimicrob. Agents Chemother., 2013, vol. 57, no. 12, pp. 6141–6146. doi: 10.1128/AAC.01364-13
  13. Nicholls J.M., Bourne A.J., Chen H., Guan Y., Peiris J.S. Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses. Respir. Res., 2007, vol. 8: 73. doi: 10.1186/1465-9921-8-73
  14. Skowronski D.M., Sabaiduc S., Chambers C., Eshaghi A., Gubbay J.B. Krajden M., Drews S.J., Martineau C., De Serres G., Dickinson J.A., Winter A.L., Bastien N., Li Y. Mutations acquired during cell culture isolation may affect antigenic characterization of influenza A(H3N2) clade 3C.2a viruses. Eurosurveillance, 2016, vol. 21, no. 3: 30112. doi: 10.2807/1560-7917.ES.2016.21.3.30112
  15. Smith D.J., Lapedes A.S., de Jong J.C., Bestebroer T.M., Rimmelzwaan G.F., Osterhaus A.D., Fouchier R.A. Mapping the antigenic and genetic evolution of influenza virus. Science, 2004, vol. 305, pp. 371–376. doi: 10.1126/science.1097211
  16. Xiong X., McCauley J.W., Steinhauer D.A. Receptor binding properties of the influenza virus hemagglutinin as a determinant of host range. Curr. Top. Microbiol. Immunol., 2014, vol. 385, pp. 63–91. doi: 10.1007/82_2014_423
  17. Xue K.S, Greninger A.L., Pérez-Osorio A., Bloom J.D. Cooperating H3N2 influenza virus variants are not detectable in primary clinical samples. mSphere, 2018, vol. 3, no. 1: e00552-17. doi: 10.1128/mSphereDirect.00552-17
  18. Xue K.S., Hooper K.A., Ollodart A.R., Dingens A.S., Bloom J.D. Cooperation between distinct viral variants promotes growth of H3N2 influenza in cell culture. Microbiol. Infec. Dis., 2016, no. 5: e13974. doi: 10.7554/eLife.13974
  19. WHO Recommended composition of influenza virus vaccines for use in the 2019 southern hemisphere influenza season.
  20. Worldwide influenza centre WHO CC for Reference & Research on Influenza Annual report. The Francis Crick Institute. February, 2017.
  21. Worldwide influenza centre WHO CC for Reference & Research on Influenza Annual report. The Francis Crick Institute. February, 2018.
  22. Worldwide influenza centre WHO CC for Reference & Research on Influenza Annual report. The Francis Crick Institute. September, 2018.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Petrova P.A., Konovalova N.I., Vassilieva A.D., Eropkina E.M., Ivanova A.A., Komissarov A.B., Eropkin M.Y., Danilenko D.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».