Bioinformatics analysis of putative causes for сross-reactive antibodies interacting with antigens derived from various pathogenic human papillomaviruses

封面

如何引用文章

全文:

详细

Human papillomaviruses (HPVs) belong to highly abundant resulting in sexually transmitted virus infections, and cause cervical cancer holding place 4 among most common cancer types in women. In 2012, there were registered 266,000 death cases and 528,000 new cases. At present, three HPV prophylactic vaccines were generated worldwide: bivalent Cervarix, quadrivalent Gardasil and nonavalent Gardasil-9. Examining such vaccines uncovered that they are able to induce anti-HPV antibody production against viral antigens lacked in vaccine formula. The mechanism of such crossneutralizing antibodies recognizing antigens derived from various HPV pathogenic types remains unknown. In our study we attempted to uncover putative basis underlying cross-reactive interaction between vaccine-induced antibodies and non-vaccine antigens by bioinformatical approaches, that might allow optimize generation of future candidate vaccines and obtain more effective polyvalent immunobiological preparations against HPV. We used amino acid sequences of L1 coat protein of four top high-risk oncogenic HPV types (16, 18, 31 and 45) in the study. Work sequences were retrieved from the International Data Base of NCBI (National Center for Biotechnology Information) and aligned by using Clustal Omega’ and BioEdit software. A search and analysis of distinct antigenic determinant (epitopes) were performed by using software suite BepiPred-2.0: Sequential B-Cell Epitope Predictor, DiscoTope 2.0 Server, and SYFPEITHI. Bioinformatics data revealed pronounced potential of cross-neutralizing vaccine-induced antibodies and non-vaccines antigens derived from high-risk pathogenic types HPV 16, 18, 31 and 45 owing to the similarity in antigenic determinants (epitopes). Common linear determinants for T- and B-cells were found in all four types of L1 protein counterparts. In addition, similar three-dimensional B-cell determinants were discovered in HPV16 L1 and HPV18 L1. Antigenic determinants derived from HPV16 L1 and HPV31 L1 exhibited most close similarity. Hence, while immunizing with HPV16 L1, a more pronounced and moderate cross-reactive antibodies interacting with HPV31 L1 as well as HPV18 L1 and HPV45 L1 antigens, respectively, should be expected. Inversely, immunization with HPV18 L1might elicit active and less efficient crossneutralizing response with HPV45 L1 as well as HPV16 L1 and HPV31 L1, respectively.

 

作者简介

A. Stolbikov

Siberian Institute of Plant Physiology and Biochemistry, SB RAS; Irkutsk State University

编辑信件的主要联系方式.
Email: valkir5@yandex.ru
ORCID iD: 0000-0002-6392-9365

Aleksey S. Stolbikov - PhD (Biology), Senior Researcher, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, RAS; Associate Professor, Department of Plant Physiology, Cell Biology and Genetics, ISU.

664033, Irkutsk, Lermontov str., 132, Phone: +7 (3952) 42-46-59, Fax: +7 (3952) 51-07-54

俄罗斯联邦

R. Salyaev

Siberian Institute of Plant Physiology and Biochemistry, SB RAS

Email: salyaev@sifibr.irk.ru

RAS Corresponding Member, PhD, MD (Biology), Advisor for Russian Academy of Sciences, Siberian Institute of Plant Physiology and Biochemistry SB RAS.

Irkutsk

俄罗斯联邦

N. Rekoslavskaya

Siberian Institute of Plant Physiology and Biochemistry, SB RAS; Irkutsk Research Center, Siberian Branch, Russian Academy of Sciences

Email: rekoslavskaya@sifibr.irk.ru

PhD, MD (Biology), Head Researcher, Siberian Institute of Plant Physiology and Biochemistry SB RAS; IRC, Siberian Branch, RAS.

Irkutsk

俄罗斯联邦

参考

  1. Костин А.А., Старинский В.В., Самсонов Ю.В., Асратов А.Т. Анализ статистических данных о злокачественных новообразованиях, ассоциированных с вирусом папилломы человека // Исследования и практика в медицине. 2016. Т. 3, № 1. С. 66—78.
  2. Медицинская микробиология, вирусология и иммунология: учебник; в 2-х т. Т. 1. Под ред. В.В. Зверева, М.Н. Бойченко. М.: ГЭОТАР-Медиа, 2010. 448 с.
  3. Bishop B., Dasgupta J., Klein M., Garcea R.L., Christensen N.D., Zhao R., Chen X.S. Crystal structures of four types of human papillomavirus L1 capsid proteins: understanding the specificity of neutralizing monoclonal antibodies. J. Biol. Chem, 2007, vol. 282, pp. 31803-31811. doi: 10.1074/jbc.M706380200
  4. Bisset S.L., Draper E., Myers R.E., Godi A., Bedrows S. Cross-neutralizing antibodies elicited by the Cervarix® human papillomavirus vaccine display a range of Alpha-9 inter-type specificities. Vaccine, 2014, vol. 32, no. 10, pp. 1139-1146. doi: 10.1016/j.vaccine.2014.01.008
  5. Bosch F.X., Broker T.R., Forman D., Moscicki A.B., Gillison M.L., Doorbar J., Stern P.L., Stanley M., Arbyn M., Poljak M., Cuzick J., Castle P.E., Schiller J.T., Markowitz L.E., Fisher WA, Canfell K., Denny L.A., Franco E.L., Steben M., Kane M.A., Schiffman M., Meijer C.J., Sankaranarayanan R., Castellsague X., Kim J.J., Brotons M., Alemany L., Albero G., Diaz M., de Sanjose S. Comprehensive control of human papillomavirus infections and related diseases. Vaccine, 2013, vol. 31, suppl. 7: H1-H31. doi: 10.1016/j.vaccine.2013.10.003
  6. Brown D.R., Kjaer S.K., Sigurdsson K., Iversen O.-E., Hernandes-Avila M., Wheeler C.M., Perez G., Koutsky L.A., Tay E.H., Garcia P., Ault K.A., Garland S.M., Leodolter S., Olsson S.E., Tang G.W., Ferris D.G., Paavonen J., Steben M., Bosch F.X., Dillner J., Joura E.A., Kurman R.J., Majewski S., Munoz N., Myers E.R., Villa L.L., Taddeo F.J., Roberts C., Tadesse A., Bryan J., Lupinacci L.C., Giacoletti K.E., Sings H.L., James M., Hesley T.M., Barr E. The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in generally HPV-naive women aged 16—26 years. J. Infect. Dis., 2009, vol. 199, no. 7, pp. 926-935. doi: 10.1086/597307
  7. Chen X.S., Garcea R.L., Goldberg I., Casini G., Harrison S.C. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol. Cell., 2000, vol. 5 (3), pp. 557—567. doi: 10.1016/S1097-2765(00)80449-9
  8. Christensen N.D., Dillner J., Eklund C., Carter J.J., Wipf G.C., Reed C.A., Cladel N.M., Galloway D.A. Surface conformational and linear epitopes on HPV-16 and HPV-18 L1 virus-like particles as defined by monoclonal antibodies. Virology, 1996, vol. 223, pp. 174-184. doi: 10.1006/viro.1996.0466
  9. Combita A.L., Touze A., Bousarghin L., Christensen N.D., Coursaget P. Identification of two cross-neutralizing linear epitopes within the L1 major capsid protein of Human Papillomaviruses. J. Virol., 2002, vol. 76 (13), pp. 6480- 6486. doi: 10.1128/jvi.76.13.6480-6486.2002
  10. Kemp T.J., Hildesheim A., Safaeian M., Dauner J.G., Pan Y., Porras C., Schiller J.T., Lowy D.R., Herrero R., Pinto L.A. HPV16/18 L1 VLP Vaccine Induces Cross-Neutralizing Antibodies that May Mediate Cross-Protection. Vaccine, 2011, vol. 29 (11),pp. 2011-2014. doi: 10.1016/j.vaccine.2011.01.001
  11. Li Z., Song S., He M., Wang D., Shi J., Liu X., Li Y., Chi X., Wei S., Yang Y., Wang Z., Li J., Qian H., Yu H., Zheng Q., Yan X., Zhao Q., Zhang J., Gu Y., Li S., Xia N. Rational design of a triple-type human papillomavirus vaccine by compromising viral-type specificity. Nat. Commun., 2018, vol. 9: 5360. doi: 10.1038/s41467-018-07199-6
  12. McLaughlin-Drubin M.E., Munger K. Oncogenic activities of human papillomaviruses. Virus Res., 2009, vol. 143 (2), pp. 195208. doi: 10.1016/j.virusres.2009.06.008
  13. Modis Y., Trus B.L., Harrison S.C. Atomic model of the papillomavirus capsid. EMBO J., 2002, vol. 21, no. 18, pp. 4754-4762. doi: 10.1093/emboj/cdf494
  14. Myers E.R., McCrory D.C., Nanda K., Bastian L., Matchar D.B. Mathematical model for the natural history of human papillomavirus infection and cervical carcinogenesis. Am. J. Epidemiol., 2000, vol. 151 (12), pp. 1158-1171. doi: 10.1093/oxfordjournals.aje.a010166
  15. Nakagawa M., Greenfield W., Moerman-Herzog A., Coleman H.M. Cross-reactivity, epitope spreading, and de novo immune stimulation are possible mechanisms of cross-protection of nonvaccine human papillomavirus (HPV) types in recipients of HPV therapeutic vaccines. Clin. Vaccine Immunol., 2015, vol. 22, no. 7, pp. 679-687. doi: 10.1128/CVI.00149-15
  16. Namvar A., Bolhassani A., Javadi G., Noormohammadi Z. In silico/in vivo analysis of high-risk papillomavirus L1 and L2 conserved sequences for development of cross-subtype prophylactic vaccine. Sci. Rep., 2019, vol. 9 (1): 15225. doi: 10.1038/s41598-019-51679-8
  17. Salyaev R.K., Rekoslavskaya N.I., Stolbikov A.S. Cross-reactivity of antigens and antibodies belonging to different pathogenic types of human papillomaviruses. Dokl. Biochem. Biophys., 2017, vol. 477, no. 3, pp. 371-375. doi: 10.1134/S1607672917060084
  18. Salyaev R.K., Rekoslavskaya N.I., Stolbikov A.S., Tretyakova A.V. Using the omega leader sequence of tobacco mosaic virus to transform tomato fruits with the papillomavirus HPV16 L1 gene to enhance production of the antigenic protein HPV16 L1. Dokl. Biochem. Biophys., 2016, vol. 468, no. 1, pp. 187-189. doi: 10.1134/S1607672916030078
  19. Salyaev R.K., Rekoslavskaya N.I., Tretyakova A.V. The study of immunogenicity оf the antigenic protein оf high risk oncogenic type оf the human papillomavirus HPV16 l1 produced in the plant expression system on the base of transgenic tomato. Dokl. Biochem. Biophys,, 2017, vol. 474, no. 1, pp. 186-188. doi: 10.1134/S1607672917030140
  20. Scherpenisse M., Schepp R.M., Mollers M., Meijer C.J.L.M., Berbers G.A.M. Characteristics of HPV-specific antibody responses induced by infection and vaccination: cross-reactivity, neutralizing activity, avidity and IgG subclasses. PLoS One, 2013, vol. 8, no. 9: e74797. doi: 10.1371/journal.pone.0074797
  21. Shen Z.T., Nguyen T.T., Daniels K.A., Welsch R.M., Stern L.J. Disparate epitopes mediating protective heterologous immunity to unrelated viruses share pMHC structural features recognized by cross-reactive T cells. J. Immunol., 2013, vol. 191, no. 10, pp. 5139-5152. doi: 10.4049/jimmunol.1300852
  22. Toft L., Tolstrup M., Muller M., Sehr P., Bonde J., Storgaard M., 0stergaard L., S0gaard O.S. Comparison of the immunogenicity of Cervarix® and Gardasil® human papillomavirus vaccines for oncogenic non-vaccine serotypes HPV-31, HPV-33, and HPV-45 in HIV-infected adults. Hum. Vaccin. Immunother., 2014, vol. 10, iss. 5, pp. 1147-1154. doi: 10.4161/hv.27925

补充文件

附件文件
动作
1. JATS XML

版权所有 © Stolbikov A.S., Salyaev R.K., Rekoslavskaya N.I., 2020

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».