Trajectory of age-associated changes in small intestinal microbial community of healthy person metaorganism

Cover Page

Cite item

Full Text

Abstract

The study of the small intestinal microbiota in humans is complicated due to the low availability of biomaterial. Non-invasive methods of metabolomics and bioinformatic data analysis can expand our understanding of the small intestinal microbiota structure and its role in maintaining body homeostasis. Here we assess the trajectory of age-related changes in the small intestinal microbial community of healthy individuals in the context of metaorganism-wide interaction between cytokine and neuroendocrine systems, by using the methods of gas chromatography mass spectrometry of microbial markers (GCMS MM) and optimal scaling. 110 apparently healthy children, adults and elderly individuals were enrolled to the study. The main types of the small intestine microbiota (Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, and Fusobacteria) were quantified in peripheral blood by the GCMS MM method. To construct age-related trajectories of changes in the small intestinal microbiota and parameters of cytokine and neuroendocrine systems, the optimal scaling technique based on the multivariate Gifi transformation (CATPCA method) was used. It was found, that the small intestinal bacterial community of both children and seniors contained significantly lowered total number of microorganisms due to the low number of bacteria of Firmicutes and Actinobacteria types along with high number of members of Proteobacteria and Fusobacteria types compared with adults. Assessment of the trajectory of age-associated changes in microbiota of the small intestine showed that 1) children have strong dynamic fluctuations in the number and links within microbial community along with formation of links between the main regulatory immune and neuroendocrine systems of the metaorganism, 2) adults display plasticity and consistency in functioning of immune and nervous systems that determine the state of dynamic balance of the small intestinal microbiota, 3) healthy aging is characterized by high degree of cooperation between the main members of the bacterial community, which ensures system stability at new level, as one of the mechanisms of host adaptation. Thus, using methods of GCMS MM and optimal scaling, allows us to expand our understanding about age-associated trajectory of changes in the small intestinal microbiota and its cooperation with immune and neuroendocrine systems within the metaorganism, which can be used to develop new methods of therapy for infectious and non-infectious diseases.

About the authors

Yu. Yu. Filippova

Chelyabinsk State University

Author for correspondence.
Email: julse@rambler.ru
ORCID iD: 0000-0001-5041-6440

Yuliya Yu. Filippova - PhD (Biology), Associate Professor, Department of Microbiology, Immunology and General Biology, Faculty of Biology, Chelyabinsk State University.

454001, Chelyabinsk, Bratiev Kashirinykh str., 129.

Phone: +7 912 404-52-72

Russian Federation

M. E. Kholodilina

Chelyabinsk State University

Email: kholodilina@yandex.ru

Postgraduate Student, Department of Microbiology, Immunology and General Biology, Faculty of Biology, Chelyabinsk State University.

454001, Chelyabinsk, Bratiev Kashirinykh str., 129.

Russian Federation

A. L. Burmistrova

Chelyabinsk State University

Email: burmal@csu.ru

PhD, MD (Medicine), Professor, Head of the Department of Microbiology, Immunology and General Biology, Faculty of Biology, Chelyabinsk State University.

454001, Chelyabinsk, Bratiev Kashirinykh str., 129.

Russian Federation

References

  1. Аверина О.В., Даниленко В.Н. Микробиота человека: роль в становлении и функционировании нервной системы // Микробиология. 2017. Т. 86, № 1. С. 5–24. doi: 10.7868/S0026365617010050
  2. Бурмистрова А.Л., Филиппова Ю.Ю. Конгруэнтность и фенотипическая пластичность иммунной и нервной систем у детей с расстройствами аутистического спектра в сравнении с расстройствами шизофренического спектра // Медицинская иммунология. 2020. Т. 22, № 4. С. 703–716. doi: 10.15789/1563-0625-CAP-1968
  3. Лифшиц К., Захарова И.Н., Дмитриева Ю.А. Влияние кишечного микробиома в норме и патологии на здоровье человека // Медицинский совет. 2017. № 1. C. 155–159. doi: 10.21518/2079-701X-2017-1-155-159
  4. Метаорганизм. Стресс и адаптация. Под ред. А.Л. Бурмистровой. Челябинск: Изд-во Челяб. гос. ун-та, 2019. 239 с.
  5. Попова А.Ю., Кафтырева Л.А., Сужаева Л.В., Войтенкова Е.В., Забровская А.В., Егорова С.А., Макарова М.А., Матвеева З.Н., Зуева Е.В., Порин А.А., Буаро М.Й., Константинов О.К., Тотолян А.А. Сравнительная характеристика особенностей микробиоты кишечника жителей Гвинейской Республики и России // Инфекция и иммунитет. 2017. Т. 7, № 4. С. 375–382. doi: 10.15789/2220-7619-2017-4-375-382
  6. Филиппова Ю.Ю., Бурмистрова А.Л. Когнитивная ось старости: воспаление — микробиота тонкого кишечника // Журнал микробиологии эпидемиологии и иммунобиологии. 2017. № 5. С. 3–9. doi: 10.36233/0372-9311-2017-5-3-9
  7. Щеплягина Л.А., Круглова И.В. Возрастные особенности иммунитета у детей // Русский медицинский журнал. 2009. № 23. С. 1564.
  8. Arain M., Haque M., Johal L., Mathur P., Nel W., Rais A., Sandhu R., Sharma S. Maturation of the adolescent brain. Neuropsychiatr. Dis. Treat., 2013, vol. 9, pp. 449–461. doi: 10.2147/NDT.S39776
  9. Belkaid Y., Hand T.W. Role of the microbiota in immunity and inflammation. Cell, 2014, vol. 157, no. 1, pp. 121–141. doi: 10.1016/j.cell.2014.03.011
  10. Coyte K.Z., Schluter J., Foster K.R. The ecology of the microbiome: networks, competition, and stability. Science, 2015, vol. 350, no. 6261, pp. 663–666. doi: 10.1126/science.aad2602
  11. Ding T., Schloss P.D. Dynamics and associations of microbial community types across the human body. Nature, 2014, vol. 509, no. 7500, pp. 357–360. doi: 10.1038/nature13178
  12. El Aidy S., van den Bogert B., Kleerebezem M. The small intestine microbiota, nutritional modulation and relevance for health. Curr. Opin. Biotechnol., 2015, vol. 32, pp. 14–20. doi: 10.1016/j.copbio.2014.09.005
  13. Esser D., Lange J., Marinos G., Sieber M., Best L., Prasse D., Bathia J., Rühlemann M.C., Boersch K., Jaspers C., Sommer F. Functions of the microbiota for the physiology of animal metaorganisms. J. Innate Immun., 2019, vol. 11, no. 5, pp. 393–404. doi: 10.1159/000495115
  14. Faith J.J., Guruge J.L., Charbonneau M., Subramanian S., Seedorf H., Goodman A.L., Clemente J.C., Knight R., Heath A.C., Leibel R.L., Rosenbaum M., Gordon J.I. The long-term stability of the human gut microbiota. Science, 2013, vol. 341, no. 6141: 1237439. doi: 10.1126/science.1237439
  15. Hasan N., Yang H. Factors affecting the composition of the gut microbiota, and its modulation. Peer. J., 2019, vol. 7: e7502. doi: 10.7717/peerj.7502
  16. Kastl A.J. Jr, Terry N.A., Wu G.D., Albenberg L.G. The structure and function of the human small intestinal microbiota: current understanding and future directions. Cell Mol. Gastroenterol. Hepatol., 2020, vol. 9, no. 1. pp. 33–45. doi: 10.1016/j.jc-mgh.2019.07.006
  17. Levy M., Thaiss C.A., Elinav E. Metabolites: messengers between the microbiota and the immune system. Genes Dev., 2016, vol. 30, no. 14, pp. 1589–1597. doi: 10.1101/gad.284091.116
  18. Mariat D., Firmesse O., Levenez F., Guimarăes V., Sokol H., Doré J., Corthier G., Furet J.P. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC microbiology, 2009, vol. 9: 123. doi: 10.1186/1471-2180-9-123
  19. Segal J.P., Mullish B.H., Quraishi M.N., Acharjee A., Williams H.R.T., Iqbal T., Hart A.L., Marchesi J.R. The application of omics techniques to understand the role of the gut microbiota in inflammatory bowel disease. Therap. Adv. Gastroenterol., 2019, vol. 12: 1756284818822250. doi: 10.1177/1756284818822250

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Filippova Y.Y., Kholodilina M.E., Burmistrova A.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».