Predictive value of specific cytokines for lethal COVID-19 outcome
- 作者: Arsentieva N.A.1, Liubimova N.E.1, Batsunov O.K.2,3, Korobova Z.R.2,3, Kuznetsova R.N.2,3, Rubinstein A.A.3, Stanevich O.V.3, Lebedeva A.A.3, Vorobyev E.A.3, Vorobieva S.V.3, Kulikov A.N.3, Gavrilova E.G.3, Pevtcov D.E.3, Polushin Y.S.3, Shlyk I.V.3, Totolian A.A.1,3
-
隶属关系:
- St. Petersburg Pasteur Institute
- Petersburg Pasteur Institute
- Pavlov First St. Petersburg State Medical University
- 期: 卷 12, 编号 5 (2022)
- 页面: 859-868
- 栏目: ORIGINAL ARTICLES
- URL: https://journal-vniispk.ru/2220-7619/article/view/119115
- DOI: https://doi.org/10.15789/2220-7619-PVO-2043
- ID: 119115
如何引用文章
全文:
详细
In our study, we aimed to evaluate the significance of specific cytokines in blood plasma as predictive markers of COVID-associated mortality. Materials and methods. In plasma samples of 29 patients with PCR-confirmed COVID-19 we measured the concentrations of 47 molecules. These molecules included: interleukins and selected pro-inflammatory cytokines (IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-12 (p40), IL-12 (p70), IL 13, IL-15, IL-17A/CTLA8, IL-17-E/IL-25, IL-17F, IL-18, IL-22, IL-27, IFNα2, IFNγ, TNFα, TNFβ/Lymphotoxin-α(LTA)); chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CCL7/MCP-3, CCL11/Eotaxin, CCL22/MDC, CXCL1/GROα, CXCL8/IL-8, CXCL9/MIG, CXCL10/IP-10, CX3CL1/Fractalkine); anti-inflammatory cytokines (IL-1Ra, IL-10); growth factors (EGF, FGF-2/FGF-basic, Flt-3 Ligand, G-CSF, M-CSF, GM-CSF, PDGF-AA, PDGFAB/BB, TGFα, VEGF-A); and sCD40L. We used multiplex analysis based on xMAP technology (Luminex, USA) using Luminex MagPix. As controls, we used plasma samples of 20 healthy individuals. Based on the results, we applied Receiver Operating Characteristic (ROC) analysis and Area Under Curve (AUC) values to compare two different predictive tests and to choose the optimal division point for disease outcome (survivors/non-survivors). To find optimal biomarker combinations, we as used cytokines concentrations as dependent variables to grow a regression tree using JMP 16 Software.Results. Out of 47 studied cytokines/chemokines/growth factors, we picked four pro-inflammatory cytokines as having high significance in evaluation of COVID-19 outcome: IL-6, IL-8, IL-15, and IL-18. Based on the results received, we assume that the highest significance in terms of predicting the outcome of acute COVID-19 belongs to IL-6 and IL-18. Conclusion. Analyzing concentrations of IL-6 and IL-18 before administering treatment may prove valuable in terms of outcome prognosis.
作者简介
N. Arsentieva
St. Petersburg Pasteur Institute
Email: raknv@mail.ru
PhD (Biology), Senior Researcher, Laboratory of Molecular Immunology
俄罗斯联邦, St. PetersburgN. Liubimova
St. Petersburg Pasteur Institute
Email: raknv@mail.ru
PhD (Biology), Researcher, Laboratory of Molecular Immunology
俄罗斯联邦, St. PetersburgO. Batsunov
Petersburg Pasteur Institute; Pavlov First St. Petersburg State Medical University
Email: raknv@mail.ru
Junior Researcher, Laboratory of Molecular Immunology
俄罗斯联邦, St. Petersburg; St. PetersburgZ. Korobova
Petersburg Pasteur Institute; Pavlov First St. Petersburg State Medical University
Email: zoia-korobova@yandex.ru
PhD (Medicine), Allergologist-Immunologist
俄罗斯联邦, St. Petersburg; St. PetersburgR. Kuznetsova
Petersburg Pasteur Institute; Pavlov First St. Petersburg State Medical University
Email: raknv@mail.ru
PhD (Medicine), Allergologist-Immunologist
俄罗斯联邦, St. Petersburg; St. PetersburgA. Rubinstein
Pavlov First St. Petersburg State Medical University
Email: raknv@mail.ru
6th year Student
俄罗斯联邦, St. PetersburgO. Stanevich
Pavlov First St. Petersburg State Medical University
Email: raknv@mail.ru
Infectious Disease Physician
俄罗斯联邦, St. PetersburgA. Lebedeva
Pavlov First St. Petersburg State Medical University
Email: raknv@mail.ru
Physician, Emergency Department
俄罗斯联邦, St. PetersburgE. Vorobyev
Pavlov First St. Petersburg State Medical University
Email: raknv@mail.ru
Nephrologist, Assistant Professor, Department of Nephrology
俄罗斯联邦, St. PetersburgS. Vorobieva
Pavlov First St. Petersburg State Medical University
Email: raknv@mail.ru
Physician, Assistant Professor, Department of Propaedeutics of Internal Diseases
俄罗斯联邦, St. PetersburgA. Kulikov
Pavlov First St. Petersburg State Medical University
Email: raknv@mail.ru
PhD, MD (Medicine), Professor, Head of the Department of Propaedeutics of Internal Diseases
俄罗斯联邦, St. PetersburgE. Gavrilova
Pavlov First St. Petersburg State Medical University
Email: raknv@mail.ru
PhD (Medicine), Anesthesiologist-Resuscitator of the Highest Category, Assistant Professor, Resuscitation and Anaesthesiology Department
俄罗斯联邦, St. PetersburgD. Pevtcov
Pavlov First St. Petersburg State Medical University
Email: raknv@mail.ru
Transfusiologist, Head of the Blood Transfusion Department
俄罗斯联邦, St. PetersburgYu. Polushin
Pavlov First St. Petersburg State Medical University
Email: raknv@mail.ru
RAS Full Member, PhD, MD (Medicine), Professor, Head of the Resuscitation and Anaesthesiology Department
俄罗斯联邦, St. PetersburgI. Shlyk
Pavlov First St. Petersburg State Medical University
Email: raknv@mail.ru
PhD, MD (Medicine), Professor, Deputy Head Physician
俄罗斯联邦, St. PetersburgA. Totolian
St. Petersburg Pasteur Institute; Pavlov First St. Petersburg State Medical University
编辑信件的主要联系方式.
Email: raknv@mail.ru
RAS Full Member, PhD, MD (Medicine), Professor
俄罗斯联邦, St. Petersburg; St. Petersburg参考
- Арсентьева Н.А., Любимова Н.Е., Бацунов О.К., Коробова З.Р., Станевич О.В., Лебедева А.А., Воробьев Е.А., Воробьева С.В., Куликов А.Н., Лиознов Д.А., Шарапова М.А., Певцов Д.Э., Тотолян Арег А. Цитокины в плазме крови больных COVID-19 в острой фазе заболевания и фазе полного выздоровления // Медицинская иммунология. 2021. Т. 23, № 2. С. 311–326. [Arsentieva N.A., Liubimova N.E., Batsunov O.K., Korobova Z.R., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Lioznov D.A., Sharapova M.A., Pevtsov D.E., Totolian Areg A. Plasma cytokines in patients with COVID-19 during acute phase of the disease and following complete recovery. Meditsinskaya Immunologiya = Medical Immunology (Russia), 2021, vol. 23, no. 2, pp. 311–326. (In Russ.)] doi: 10.15789/1563-0625-PCI-2312
- Смирнов В.С., Тотолян Арег А. Некоторые возможности иммунотерапии при коронавирусной инфекции // Инфекция и иммунитет. 2020. Т. 10, № 3. С. 446–458. [Smirnov V.S., Totolian Areg A. Some opportunities for immunotherapy in coronavirus infection. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2020, vol. 10, no. 3, pp. 446–458. (In Russ.)] doi: 10.15789/2220-7619-SPO-1470
- Angioni R., Sánchez-Rodríguez R., Munari F., Bertoldi N., Arcidiacono D., Cavinato S., Marturano D., Zaramella A., Realdon S., Cattelan A., Viola A., Molon B. Age-severity matched cytokine profiling reveals specific signatures in COVID-19 patients. Cell. Death Dis., 2020, vol. 11, no. 11: 957. doi: 10.1038/s41419-020-03151-z
- Arend W.P., Palmer G., Gabay C. IL-1, IL-18, and IL-33 families of cytokines. Immunol. Rev., 2008, vol. 223, pp. 20–38. doi: 10.1111/j.1600-065X.2008.00624.x
- BMJ’s Coronavirus (COVID-19) Hub. URL: https://www.bmj.com/coronavirus (27.09.2022)
- Chen L., Wang G., Tan J., Cao Y., Long X., Luo H., Tang Q., Jiang T., Wang W., Zhou J. Scoring cytokine storm by the levels of MCP-3 and IL-8 accurately distinguished COVID-19 patients with high mortality. Signal Transduct. Target. Ther., 2020, vol. 5, no. 1: 292. doi: 10.1038/s41392-020-00433-y
- Coperchini F., Chiovato L., Croce L., Magri F., Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev., 2016, vol. 53, pp. 25–32. doi: 10.1016/j.cytogfr.2020.05.003
- Costela-Ruiz V.J., Illescas-Montes R., Puerta-Puerta J.M., Ruiz C., Melguizo-Rodríguez L. SARS-CoV-2 infection: the role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev., 2020, vol. 54, pp. 62–75. doi: 10.1016/j.cytogfr.2020.06.001
- Diao B., Wang C., Tan Y., Chen X., Liu Y., Ning L., Chen L., Li M., Liu Y., Wang G., Yuan Z., Feng Z., Zhang Y., Wu Y., Chen Y. Reduction and functional exhaustion of T cells in patients with Coronavirus disease 2019 (COVID-19). Front. Immunol., 2020, vol. 11: 827. doi: 10.3389/fimmu.2020.00827
- García-Laorden M.I., Lorente J.A., Flores C., Slutsky A.S., Villar J. Biomarkers for the acute respiratory distress syndrome: how to make the diagnosis more precise. Ann. Transl. Med., 2017, vol. 5, no. 14: 283. doi: 10.21037/atm.2017.06.49
- Henriquez K.M., Hayney M.S., Xie Y., Zhang Z., Barrett B. Association of interleukin-8 and neutrophils with nasal symptom severity during acute respiratory infection. J. Med. Virol., 2015, vol. 87, no. 2, pp. 330–337. doi: 10.1002/jmv.24042
- Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, vol. 395, no. 10223, pp. 497–506. doi: 10.1016/ S0140-6736(20)30183-5
- Kox M., Waalders N.J.B., Kooistra E.J., Gerretsen J., Pickkers P. Cytokine levels in critically ill patients with COVID-19 and other conditions. JAMA, 2020, vol. 324, no. 15, pp. 1565–1567. doi: 10.1001/jama.2020.17052
- Küng E., Coward W.R., Neill D.R., Malak H.A., Mühlemann K., Kadioglu A., Hilty M., Hathaway L.J. The pneumococcal polysaccharide capsule and pneumolysin differentially affect CXCL8 and IL-6 release from cells of the upper and lower respiratory tract. PLoS One, 2014, vol. 9, no. 3: e92355. doi: 10.1371/journal.pone.0092355
- Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N., Bi Y., Ma X., Zhan F., Wang L., Hu T., Zhou H., Hu Z., Zhou W., Zhao L., Chen J., Meng Y., Wang J., Lin Y., Yuan J., Xie Z., Ma J., Liu W.J., Wang D., Xu W., Holmes E.C., Gao G.F., Wu G., Chen W., Shi W., Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, vol. 395, no. 10224, pp. 565–574. doi: 10.1016/S0140-6736(20)30251-8
- Lucas C., Wong P., Klein J., Castro T.B.R., Silva J., Sundaram M., Ellingson M.K., Mao T., Oh J.E., Israelow B., Takahashi T., Tokuyama M., Lu P., Venkataraman A., Park A., Mohanty S., Wang H., Wyllie A.L., Vogels C.B.F., Earnest R., Lapidus S., Ott I.M., Moore A.J., Muenker M.C., Fournier J.B., Campbell M., Odio C.D., Casanovas-Massana A.; Yale IMPACT Team, Herbst R., Shaw A.C., Medzhitov R., Schulz W.L., Grubaugh N.D., Dela Cruz C., Farhadian S., Ko A.I., Omer S.B., Iwasaki A. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020, vol. 584, no. 7821, pp. 463–469. doi: 10.1038/s41586-020-2588-y
- Luo H., Liu S., Wang Y., Phillips-Howard P.A., Ju S., Yang Y., Wang D. Age differences in clinical features and outcomes in patients with COVID-19, Jiangsu, China: a retrospective, multicentre cohort study. BMJ Open, 2020, vol. 10, no. 10: e039887. doi: 10.1136/bmjopen-2020-039887
- Luo X.H., Zhu Y., Mao J., Du R.C. T cell immunobiology and cytokine storm of COVID-19. Scand. J. Immunol., 2021, vol. 93, no. 3: e12989. doi: 10.1111/sji.12989
- Nakanishi K., Yoshimoto T., Tsutsui H., Okamura H. Interleukin-18 regulates both Th1 and Th2 responses. Annu. Rev. Immunol., 2001, vol. 19, pp. 423–474. doi: 10.1146/annurev.immunol.19.1.423
- Parasher A. COVID-19: current understanding of its pathophysiology, clinical presentation and treatment. Postgrad. Med. J., 2021, vol. 97, no. 1147, pp. 312–320. doi: 10.1136/postgradmedj-2020-138577
- Qian S., Gao Z., Cao R., Yang K., Cui Y., Li S., Meng X., He Q., Li Z. Transmissible gastroenteritis virus infection up-regulates FcRn expression via nucleocapsid protein and secretion of TGF-α in porcine intestinal epithelial cells. Front. Microbiol., 2020, vol. 10: 3085. doi: 10.3389/fmicb.2019.03085
- Rodriguez L., Brodin P. Unraveling the immune response in severe COVID-19. J. Clin. Immunol., 2020, vol. 40, no. 7, pp. 958–959. doi: 10.1007/s10875-020-00849-9
- Satış H., Özger H.S., Aysert Yıldız P., Hızel K., Gulbahar Ö., Erbaş G., Aygencel G., Guzel Tunccan O., Öztürk M.A., Dizbay M., Tufan A. Prognostic value of interleukin-18 and its association with other inflammatory markers and disease severity in COVID-19. Cytokine, 2021, vol. 137: 155302. doi: 10.1016/j.cyto.2020.155302
- Takeda K., Tsutsui H., Yoshimoto T., Adachi O., Yoshida N., Kishimoto T., Okamura H., Nakanishi K., Akira S. Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity, 1998, vol. 8, no. 3, pp. 383–90. doi: 10.1016/s1074-7613(00)80543-9
- Tsutsui H., Matsui K., Kawada N., Hyodo Y., Hayashi N., Okamura H., Higashino K., Nakanishi K. IL-18 accounts for both TNF-alpha- and Fas ligand-mediated hepatotoxic pathways in endotoxin-induced liver injury in mice. J. Immunol., 1997, vol. 159, no. 8, pp. 3961–3967.
- Vecchié A., Bonaventura A., Toldo S., Dagna L., Dinarello C.A., Abbate A. IL-18 and infections: Is there a role for targeted therapies? J. Cell. Physiol., 2021, vol. 236, no. 3, pp. 1638–1657. doi: 10.1002/jcp.30008
- Wang J., Jiang M., Chen X., Montaner L.J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc. Biol., 2020, vol. 108, no. 1, pp. 17–41. doi: 10.1002/jlb.3covr0520-272r
- WHO Coronavirus (COVID-19) Dashboard. URL: https://covid19.who.int (27.09.2022)
补充文件
