Impact of Candida spp. metabolites on human skin fibroblasts

Cover Page

Cite item

Full Text

Abstract

Micromycetes spp. have been increasingly involved in the etiology of infectious diseases guiding to consider them not as important as bacterial and viral pathogens. Nowadays, a lot of severe forms of candidiasis are caused by C. auris, C. albicans, whereas C. glabrata and C. krusei are of similar importance. Members of these species were selected to investigate related metabolite action on human skin fibroblasts. Candida spp. being continuously found on the epithelium and mucosal membranes resulting in to sustained interaction between microbiota and human cells. Potential to produce metabolites containing pathogenicity factors is one of the crucial events for transition to invasive candidiasis, wherein human epithelial cells build up the front line of defense barrier preventing Candida spp. invasion into deeper host tissues. The study was aimed at assessing data on metabolite effects derived from epidemiologically relevant Candida spp. on primary human skin fibroblast culture in vitro. In particular, there were analyzed Candida spp. metabolites acting on fibroblast monolayer integrity and viability in cell suspension. It was found that Candida spp. metabolites might directly cause fibroblast death so that biocidal activity was exhibited as a strain-specific feature. A direct biocidity against dermal cells was more typical for strains C. glabrata и C. krusei, less pronounced for C. albicans and very weak for C. auris. In addition, a mechanism for secretory product-related biocidal activity derived from various Candida spp. on dermal fibroblasts in vitro revealed that it resulted in fibroblasts death 1 hour after exposure that peaked at 3 hrs. Cell death was equally proceeded via apoptosis and necrosis. Of note, biocidal effect of fungal metabolites showed no correlation with Candida-related potential to cleave intercellular junctions. It was found that C. auris metabolites showing weak biocidity against some fibroblasts simultaneously resulted in more marked disruption of cell monolayer compared to other Candida spp. Perhaps, it is just a feature of C. auris that might account for its higher invasiveness potential allowing to destroy tight human tissues more effectively compared to other Candida spp.

About the authors

Nadezhda I. Ignatova

Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation

Email: n.i.evteeva@gmail.com
ORCID iD: 0000-0002-4570-9342

PhD (Biology), Associate Professor, Department of Epidemiology, Microbiology and Evidence-Based Medicine

Russian Federation, 603005, Nizhny Novgorod, Gagarina pr., 70

M. I. Zaslavskaya

Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation

Email: maya.zaslav@gmail.com
ORCID iD: 0000-0003-1895-0699

PhD, MD (Biology), Associate Professor, Professor, Department of Epidemiology, Microbiology and Evidence-Based Medicine

Russian Federation, 603005, Nizhny Novgorod, Gagarina pr., 70

N. A. Alexandrova

Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation

Email: natalyuskova@rambler.ru
ORCID iD: 0000-0003-4845-8056

PhD (Biology), Senior Lecturer, Department of Epidemiology, Microbiology and Evidence-Based Medicine

Russian Federation, 603005, Nizhny Novgorod, Gagarina pr., 70

O. E. Orlova

City Clinical Hospital No. 67 named after L.A. Vorokhobov

Email: o.e.orlova@yandex.ru

PhD (Biology), Head of the Laboratory of Microbiology

Russian Federation, Moscow

V. G. Melnikov

Moscow Research Institute of Epidemiology and Microbiology named after G.N. Gabrichevsky of Rospotrebnadzor

Author for correspondence.
Email: goutch@mail.ru

PhD (Medicine), Associate Professor, Leading Researcher

Russian Federation, Moscow

References

  1. Brown J.L., Delaney C., Short B., Butcher M.C., McKloud E., Williams C., Kean R., Ramage G. Candida auris phenotypic heterogeneity determines pathogenicity in vitro. mSphere, 2020, vol. 5, no. 3: E00371-20. doi: 10.1128/mSphere.00371-20
  2. Calderone R.A., Fonzi W.A. Virulence factors of Candida albicans. Trends Microbiol., 2001, vol. 9, no. 7, pp. 327–335. doi: 10.1016/s0966-842x(01)02094-7
  3. Du H., Bing J., Hu T., Ennis C.L., Nobile C.J., Huang G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog., 2020, vol. 16, no. 10: e1008921. doi: 10.1371/journal.ppat.1008921
  4. Eliakim-Raz N., Babaoff R., Yahav D., Yanai S., Shaked H., Bishara J. Epidemiology, microbiology, clinical characteristics, and outcomes of candidemia in internal medicine wards — a retrospective study. Int. J. Infect. Dis., 2016, vol. 52, pp. 49–54. doi: 10.1016/j.ijid.2016.09.018
  5. Galocha M., Pais P., Cavalheiro M., Pereira D., Viana R., Teixeira M.C. Divergent approaches to virulence in C. albicans and C. glabrata: two sides of the same coin. Int. J. Mol. Sci., 2019, vol. 20, no. 9: 2345. doi: 10.3390/ijms20092345
  6. Gómez-Gaviria M., Mora-Montes H.M. Current aspects in the biology, pathogeny, and treatment of Candida krusei, a neglected fungal pathogen. Infect. Drug Resist., 2020, vol. 13, pp. 1673–1689. doi: 10.2147/IDR.S247944
  7. Larkin E., Hager C., Chandra J., Mukherjee P.K., Retuerto M., Salem I., Long L., Isham N., Kovanda L., Borroto-Esoda K., Wring S., Angulo D., Ghannoum M. The emerging pathogen Candida auris: growth phenotype, virulence factors, activity of antifungals, and effect of SCY-078, a novel glucan synthesis inhibitor, on growth morphology and biofilm formation. Antimicrob. Agents Chemother., 2017, vol. 61: 02396-16. doi: 10.1128/ AAC.02396-16
  8. Lockhart S.R., Etienne K.A., Vallabhaneni S., Farooqi J., Chowdhary A., Govender N.P., Colombo A.L., Calvo B., Cuomo C.A., Desjardins C.A., Berkow E.L., Castanheira M., Magobo R.E., Jabeen K., Asghar R.J., Meis J.F., Jackson B., Chiller T., Litvintseva A.P. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis., 2017, vol. 64, no. 2, pp. 134–140. doi: 10.1093/cid/ciw691
  9. Nett J.E. Candid auris: аn emergingpathogen “incognito”? PLoS Pathog., 2019, vol. 15, no. 4: e1007638. doi: 10.1371/journal.ppat.1007638
  10. Pereira R., dos Santos Fontenelle R.O., de Brito EHS, de Morais S.M. Biofilm of Candida albicans: formation, regulation and resistance. J. Appl. Microbiol., 2021, vol. 131, no. 1, pp. 11–22. doi: 10.1111/jam.14949
  11. Rossato L., Colombo A.L. Candida auris: what have we learned about its mechanisms of pathogenicity? Front. Microbiol., 2018, vol. 9: 3081. doi: 10.3389/fmicb.2018.03081
  12. Schelenz S., Hagen F., Rhodes J.L., Abdolrasouli A., Chowdhary A., Hall A., Ryan L., Shackleton J., Trimlett R., Meis J.F., Armstrong-James D., Fisher M.C. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob. Resist. Infect. Control., 2016, vol. 5: 35. doi: 10.1186/s13756-016-0132-5
  13. Staniszewska M. Virulence factors in Candida species. Curr. Protein Pept. Sci., 2020, vol. 21, no. 3, pp. 313–323. doi: 10.2174/1389203720666190722152415
  14. Staniszewska M., Bondaryk M., Zbigniew O. Contribution of aspartic proteases in Candida virulence. Protease inhibitors against Candida infections. Curr. Protein Pept. Sci., 2017, vol. 18, no. 10, pp. 1050–1062. doi: 10.2174/1389203717666160809155749
  15. Talapko J., Juzbašić M., Matijević T., Pustijanac E., Bekić S., Kotris I., Škrlec I. Candida albicans — the virulence factors and clinical manifestations of infection. J. Fungi (Basel)., vol. 7, no. 2: 79. doi: 10.3390/jof7020079

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Ignatova N.I., Zaslavskaya M.I., Alexandrova N.A., Orlova O.E., Melnikov V.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».