Artificial intelligence in the immunodiagnostics of chronic periodontitis

封面

如何引用文章

全文:

详细

Artificial intelligence is used to diagnose various diseases of the oral cavity. In the field of clinical laboratory diagnostics, machine learning algorithms are used in the interpretation of complex biochemical data. The purpose of this study was to search for significant infectious-immunological clinical and laboratory data based on a machine learning algorithm for chronic periodontitis. To do this, 124 patients aged 40 to 70 years diagnosed with chronic periodontitis were examined by real-time PCR to detect the periodontal pocket DNA of human herpes viruses and bacterial periodontopathogenic microflora Fusobacterium nucleatum, Treponema denticola, Porphyromonas endodontalis etc., and Porphyromonas gingivalis. Matrix RNAs of proinflammatory cytokines and other markers of chronic inflammatory process were also studied: IL-1β, IL-10, IL-18, TNFa, TLR4, GATA3, CD68. TNFa, IFNg, IL-1β, IL-4, IL-6, IL-10, IL-18; VEGF were determined in a dentoalveolar fluid. Immune cells of the oral cavity were evaluated by analyzing level of CD3+, CD4+, CD8+, CD3+HLA-DR+, CD64+16+14, CD4+25+127+low, CD3+CD16+CD56+, CD3CD16+CD56+, CD14+, CD14+HLA-DR+, CD19+HLA-DR+, CD19+CD5+B27, CD19+CD5B27, CD19+CD5B27+ cells. Random forest machine learning was used to evaluate the data. A relationship between pathogenic microflora and modality of immune response was revealed. The proinflammatory component reflected in the expression of IL-1β, TNFa, and IFNg mRNA, prevailed in the immune response against aggressive periodontal pathogens: T. denticola, F. nucleatum, etc. The random forest machine learning algorithm selected correlation ratios r ≥ 0.5 (both positive and negative) from a set of data for further analysis by the operator. The random forest machine learning model showed the following significant combinations of data by 10% with a teacher: VEGF, CD3+, CD14+HLA-DR, CD19+CD5CD27+, as well as TLR4, IL-1b, IL-10, TNFa, and IL-18 mRNA. The development of the applied “random forest” machine learning model with a teacher has already shown a 25% difference: P. endodontalis, GATA3, CD3+, CD14+, CD19+CD5CD27+, as well as TLR4, TNFa, IL-1b, IL-10, and IL-18 mRNA. The search for significant infectious-immunological clinical and laboratory data based on a machine learning algorithm for chronic periodontitis has shown the importance of proinflammatory cytokines, monocytes, T-lymphocytes and memory B-cells in the development of osteodestructive inflammatory process of mRNA to reveal non-evident causality factors.

作者简介

Valery Mudrov

Russian Medical Academy of Continuous Professional Education; Diagnostic Clinical Center No. 1 of the Moscow Department of Health

编辑信件的主要联系方式.
Email: vpmudrov@yandex.ru
ORCID iD: 0000-0003-1129-8335
SPIN 代码: 4934-3745
Scopus 作者 ID: 934044
Researcher ID: ABD-8217-2020

PhD (Medicine), Associate Professor, Department of Medical Biochemistry and Immunopathology, Academic Educational Center for Fundamental and Translational Medicine; Pathologist, Diagnostic Clinical Center No. 1 

俄罗斯联邦, 125284, Moscow, Polikarpova str., 1/10; Moscow

参考

  1. Cabitza F., Banfi G. Machine learning in laboratory medicine: waiting for the flood? Clin. Chem. Lab. Med., 2018, vol. 56, no. 4, pp. 516–524. doi: 10.1515/cclm-2017-0287
  2. De Bruyne S., Speeckaert M.M., Van Biesen W., Delanghe J.R. Recent evolutions of machine learning applications in clinical laboratory medicine. Crit. Rev. Clin. Lab. Sci., 2021, vol. 58, no. 2, pp. 131–152. doi: 10.1080/10408363.2020.1828811
  3. Lee J.-H., Kim D.-Н., Jeong S.-N., Choi S.-H. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J. Periodontal. Implant. Sci., 2018, vol. 48, no. 2, pp. 114–123. doi: 10.5051/jpis.2018.48.2.114
  4. Mupparapu M., Wu C.W., Chen Y.C. Artificial intelligence, machine learning, neural networks, and deep learning: futuristic concepts for new dental diagnosis. Quintessence Int., 2018, vol. 49, no. 9, pp. 687–688. doi: 10.3290/j.qi.a41107
  5. Nakano Y., Suzuki N., Kuwata F. Predicting oral malodour based on the microbiota in saliva samples using a deep learning approach. BMC Oral Health, 2018, vol. 18, pp. 128–135. doi: 10.1186/s12903-018-0591-6
  6. Patil S., Albogami S., Hosmani J., Mujoo S., Kamil M.A., Mansour M.A., Abdul H.N., Bhandi S., Ahmed S.S.S.J. Artificial intelligence in the diagnosis of oral diseases: applications and pitfalls. Diagnostics (Basel), 2022, vol. 12, no. 5: 1029. doi: 10.3390/diagnostics12051029
  7. Revilla-León M., Gómez-Polo M., Barmak A.B., Inam W., Kan J.Y.K., Kois J.C., Akal O. Artificial intelligence models for diagnosing gingivitis and periodontal disease: a systematic review. J. Prosthet. Dent., 2022, S0022-3913(22)00075-0. doi: 10.1016/ j.prosdent.2022.01.026

补充文件

附件文件
动作
1. JATS XML

版权所有 © Mudrov V.P., 2022

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».