SARS-CoV-2 collective immunity among the population of the Republic of Armenia

Cover Page

Cite item

Full Text

Abstract

Background. The COVID-19 pandemic has become a substantial global health crisis, unparalleled in world history. Infection dynamics can have specific characteristics in different countries due to social, economic, climatic, or geographic factors. Aim: to study features of SARS-CoV-2 collective immunity among the Armenian population. Materials and methods. A cross-sectional, randomized study of collective immunity was carried out according to a program developed by Rospotrebnadzor and the St. Petersburg Pasteur Institute, taking into account WHO recommendations. The study was approved by the ethics committees of the National Center for Infectious Diseases (Armenia) and the St. Petersburg Pasteur Institute (Russia). A volunteer cohort was formed (N = 6057), randomized by age and region. The study’s analysis included: shares and distributions of antibodies (Abs) to nucleocapsid (Nc) antigen (Ag) and receptor binding domain (RBD) S-1 Ag in the cohort; and quantitative determination of these Abs by ELISA. During the survey, a history of vaccination was indicated by 4395 people. Results. Overall seropositivity formed in the whole cohort (by April 14, 2022) was 98.6% (95% CI: 98.1–98.7). It did not depend on age, place of residence, or occupation. When quantifying Nc and RBD Abs, the proportions of volunteers with Nc Ab levels of 1–17 BAU/ml and RBD Ab levels of 22.6–220 BAU/ml were the smallest, amounting to 6.9% (95% CI: 6.2–7.5) and 20.4% (95% CI: 19.4–21.4), respectively. With increasing serum concentrations (Nc > 667 BAU/ml, RBD > 450 BAU/ml), the proportions of individuals with the corresponding levels were 20.2% for Nc (95% CI: 19.2–21.3) and 54.2% for RBD (95% CI: 52.9–55.5). Vaccination coverage was 72.6% (95% CI: 71.5–73.7). The most frequently used were Sinopharm/BIBP (32.4%), AZD1222 (22.3%), and Gam-COVID-Vac (21%). The remaining vaccines (CoronaVac, mRNA-1273, BNT162b2, CoviVac) were used by 24.3% of vaccinated individuals. When summing vaccines by platform, it was found that: vector vaccines were used in 40.34% (95% CI: 33.57–42.39) of cases; whole-virion vaccines were used in 26.83% (95% CI: 24.76–32.20); and vector vaccines were used in 6.33% (95% CI: 4.84–8.91). Conclusion. The epidemic situation in Armenia by April 2022 was characterized by a high level of collective immunity, independent of age or regional factors. Vector and whole-virion vaccines have been used most widely.

About the authors

Anna Yu. Popova

Federal Service for Supervision of Consumer Rights Protection and Human Welfare

Email: vssmi@mail.ru

DSc (Medicine), Professor, Head

Russian Federation, Moscow

Vyacheslav S. Smirnov

St. Petersburg Pasteur Institute

Author for correspondence.
Email: vssmi@mail.ru

DSc (Medicine), Professor, Leading Researcher, Laboratory of Molecular Immunology

Russian Federation, St. Petersburg

Svetlana A. Egorova

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

DSc (Medicine), Deputy Director for Innovation

Russian Federation, St. Petersburg

Artavazd V. Vanyan

National Center for Disease Control and Prevention

Email: vssmi@mail.ru

PhD (Medicine), General Director

Armenia, Yerevan

Angelika M. Milichkina

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

PhD (Medicine), Head Physician of the Medical Center

Russian Federation, St. Petersburg

Nune G. Bakunts

National Center for Disease Control and Prevention

Email: vssmi@mail.ru

Deputy-Director General

Armenia, Yerevan

Irina V. Drozd

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

PhD (Biology), Head of the Central Clinical Diagnostic Laboratory

Russian Federation, St. Petersburg

Romella A. Abovyan

National Center for Disease Control and Prevention

Email: vssmi@mail.ru

Head of the Department of Epidemiology of Communicable and Non-Communicable Diseases

Armenia, Yerevan

Valeriy A. Ivanov

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

IT analyst

Russian Federation, St. Petersburg

Gayane G. Melik-Andreasyan

National Center for Disease Control and Prevention

Email: vssmi@mail.ru

DSc (Medicine), Professor, Deputy-Director for Scientific Work, “Referens Laboratory Center” Branch

Armenia, Yerevan

Edward Smith Ramsay

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

Science Analyst

Russian Federation, St. Petersburg

Gennady O. Palozyan

National Center for Disease Control and Prevention

Email: vssmi@mail.ru

Epidemiologist, Department of Epidemiology of Communicable and Non-Communicable Diseases

Armenia, Yerevan

Tatyana V. Arbuzova

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

Junior Researcher, Epidemiological Monitoring and Forecasting Group

Russian Federation, St. Petersburg

Ara Sh. Keshishyan

National Center for Disease Control and Prevention

Email: vssmi@mail.ru

PhD (Medicine), Head of the Laboratory of Parasitology, “Referens Laboratory Center” Branch

Armenia, Yerevan

Ouna B. Zhimbayeva

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

Physician, Central Clinical Diagnostic Laboratory of the Medical Center

Russian Federation, St. Petersburg

Olga A. Petrova

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

Doctor of Clinical Laboratory Diagnostics, Central Clinical Diagnostic Laboratory of the Medical Center

Russian Federation, St. Petersburg

Alexandra V. Gubanova

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

Doctor of Clinical Laboratory Diagnostics, Central Clinical Diagnostic Laboratory of the Medical Center

Russian Federation, St. Petersburg

Alexandra P. Razumovskaya

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

Doctor of Clinical Laboratory Diagnostics, Central Clinical Diagnostic Laboratory of the Medical Center

Russian Federation, St. Petersburg

Areg A. Totolian

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

RAS Full Member, DSc (Medicine), Professor, Director

Russian Federation, St. Petersburg

References

  1. Agresti A., Coull B.A. Approximate is better than “exact” for interval estimation of binomial proportions. Am. Stat., 1998, vol. 52, pp. 119–126. doi: 10.2307/2685469
  2. Calculation of the required sample size. In: Batrakova L.G. Statistics theory. 2009. URL: https://docplayer. com.28880846-L-g-batrakova-teoriya-statistiki (01.04.2022)
  3. Coronavirus Monitor. URL: https://coronavirus-monitor.info (14.10.2022)
  4. Crotty S. Hybrid immunity. Science. 2021. vol. 372, no. 6549, pp. 1392–1393. doi: 10.1126/science
  5. Fiolet T., Kherabi Y., MacDonald C.J., Ghosn J., Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin. Microbiol. Infect., 2022, vol. 28, no. 2, pp. 202–221. doi: 10.1016/j.cmi.2021.10.005
  6. GOGOV. 2022. URL: https://gogov.ru/covid-v-stats/armeniya (20.10.2022)
  7. Haas E.J., Angulo F.J., McLaughlin J.M., Anis E., Singer S.R., Khan F., Brooks N., Smaja M., Mircus G., Pan K., Southern J., Swerdlow D.L., Jodar L., Levy Y., Alroy-Preis S. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet, 2021, vol. 397, no. 10287, pp. 1819–1829. doi: 10.1016/S0140-6736(21)00947-8
  8. Hassine I.H. Covid-19 vaccines and variants of concern: a review. Rev. Med. Virol., 2022, vol. 32, no. 4: e2313. doi: 10.1002/rmv.2313
  9. Hernández C.R., Moreno J.C.S. Inmunidad frente a SARS-CoV-2: caminando hacia la vacunación Revista Española de Quimioterapia. Rev. Esp. Quimioter., 2020. doi: 10.37201/req/086.2020
  10. Indari O., Jakhmola S., Manivannan E., Jha H.C. An update on antiviral therapy against SARS-CoV-2: how far have we come? Front. Pharmacol., 2021, vol. 12: 632677. doi: 10.3389/fphar.2021.632677
  11. Li J., Jia H., Tian M., Wu N., Yang X., Qi. J., Ren W., Li. F., Bian H. SARS-CoV-2 and emerging variants: unmasking structure, function, infection, and immune escape mechanisms. Front. Cell. Infect. Microbiol., 2022, vol. 12: 869832. doi: 10.3389/fcimb.2022.869832
  12. Our world in data. URL: https://ourworldindata.org/explorers/coronavirus-data-explorer (14.09.2022)
  13. Popova A.Y., Kasymov O.T., Smolenski V.Y., Smirnov V.S., Egorova S.A. Nurmatov Z.S., Milichkina A.M., Suranbaeva G.S., Kuchuk T.E., Khamitova I.V., Zueva E.V., Ivanov V.A., Nuridinova Z.N., Derkenbaeva A.A., Drobyshevskaya V.G., Sattarova G.Z., Kaliev M.T., Gubanova A.V., Zhimbaeva O.B., Razumovskaya A.P., Verbov V.N., Likhachev I.V., Krasnov A.V., Totolian A.A. SARS-CoV-2 herd immunity of the Kyrgyz population in 2021. Med. Microbiol. Immunol., 2022, vol. 211, no. 4, pp. 195–210. doi: 10.1007/s00430-022-00744-7
  14. Popova A.Yu., Tarasenko A.A., Smolenskiy V.Yu., Egorova S.A., Smirnov V.S., Dashkevich A.M., Svetogor T.N., Glinskaya I.N., Skuranovich A.L., Milichkina A.M., Dronina A.M., Samoilovich E.O., Khamitova I.V., Semeiko G.V., Amvrosyeva T.V., Shmeleva N.P., Rubanik L.V., Esmanchik O.P., Karaban I.A., Drobyshevskaya V.G., Sadovnikova G.V., Shilovich M.V., Podushkina E.A., Kireichuk V.V., Petrova O.A., Bondarenko S.V., Salazhkova I.F., Tkach L.M., Shepelevich L.P., Avtukhova N.L., Ivanov V.A., Babilo A.S., Navyshnaya M.V., Belyaev N.N., Zueva E.V., Volosar L.A., Verbov V.N., Likhachev I.V., Zagorskaya T.O., Morozova N.F., Korobova Z.R., Gubanova A.V., Totolian Areg A. Herd immunity to SARS-CoV-2 among the population of the Republic of Belarus amid the COVID-19 pandemic. Russian Journal of Infection and Immunity, 2021, vol. 11, no. 5, pp. 887–904. doi: 10.15789/2220-7619-HIT-1798
  15. Popova A.Yu., Totolian A.A. Methodology for assessing herd immunity to the SARS-CoV-2 virus in the context of the COVID-19 pandemic. Russian Journal of Infection and Immunity, 2021, vol. 11, no. 4, pp. 609–616. doi: 10.15789/2220-7619-MFA-1770
  16. Population-based age-stratified seroepidemiological investigation protocol for coronavirus 2019 (COVID-19) infection. URL: https://www.who.int/publications/i/item/WHO-2019-nCoV-Seroepidemiology-2020.2 (20.04.2022)
  17. Public Health and Social Measures in Response to COVID-19. URL: https://phsm.euro.who.int/countries/3 (21.09.2022)
  18. Randolph H.E., Barreiro L.B. Herd immunity: understanding COVID-19. Immunity, 2020, vol. 52, no. 5, pp. 737–741. doi: 10.1016/j.immuni.2020.04.012
  19. Schwab K., Malleret T. COVID-19: the Great Reset. Geneva (Switzerland): World Economic Forum, 2020.
  20. Significant Difference Calculator (z-test). RADAR Research Company. 2020. URL: https://radar-research.ru (18.04.2022)
  21. Şimşek-Yavuz S., Komsuoğlu Çelikyurt F.I. An update of anti-viral treatment of COVID-19. Turk. J. Med. Sci., 2021, vol. 51, no. SI-1, pp. 3372–3390. doi: 10.3906/sag-2106-250
  22. Totolian A.A., Smirnov V.S., Krasnov, A.A, Ramsay E.S., Dedkov V.G., Popova A.Yu. COVID-19 case numbers as a function of regional testing strategy, vaccination coverage, and vaccine type. Preprint. 2022. doi: 10.21203/rs.3.rs-2183670/v1
  23. Wald A., Wolfowitz J. Confidence limits for continuous distribution functions. Ann. Math. Stat., 1939, vol. 10, no. 2, pp. 105–118.
  24. Wang X., Zhao X., Song J., Wu J., Zhu Y., Li M., Cui Y., Chen Y., Yang L., Liu J., Zhu H., Jiang S., Wang P. Homologous or heterologous booster of inactivated vaccine reduces SARS-CoV-2 Omicron variant escape from neutralizing antibodies. Emerg. Microbes Infect., 2022, vol. 11, no. 1, pp. 477–481. doi: 10.1080/22221751.2022.2030200
  25. Wang R., Chen J., Gao K., Wei G.W. Vaccine-escape and fast-growing mutations in the United Kingdom, the United States, Singapore, Spain, India, and other COVID-19-devastated countries. Genomics, 2021, vol. 113, no. 4, pp. 2158–2170. doi: 10.1016/j.ygeno.2021.05.006
  26. Yan W., Zheng Y., Zeng X., He B., Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct. Target Ther., 2022, vol. 7, no. 1: 26. doi: 10.1038/s41392-022-00884-5

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Incidence dynamics in the Armenian population for the entire observation period until April 14 2022

Download (76KB)
3. Figure 2. Dynamics of COVID-19 vaccination in Armenia [6]

Download (96KB)
4. Figure 3. Algorithm for organization and conduct of the study of SARS-CoV-2 collective immunity in the Republic of Armenia

Download (156KB)
5. Figure 4. Volunteer seroprevalence by age group

Download (159KB)
6. Figure 5. Volunteer seroprevalence by region of residence

Download (187KB)
7. Figure 6. Distribution of the volunteer cohort by occupation with grouping

Download (90KB)
8. Figure 7. Volunteer seroprevalence by field of activity

Download (172KB)
9. Figure 8. Nc antibody serological intervals plotted by age group

Download (167KB)
10. Figure 9. RBD antibody serological intervals plotted by age group

Download (116KB)
11. Figure 10. Vaccine usage structure in Armenia by share

Download (86KB)
12. Figure 11. Vaccination coverage by professional group

Download (100KB)
13. Figure 12. Vaccination coverage by age group

Download (82KB)
14. Figure 13. Distribution of the main vaccine types by age

Download (95KB)
15. Figure 14. Share of completely vaccinated volunteers by region (as of 16/04/2022)

Download (89KB)
16. Figure 15. Regional distribution of vaccine usage (%) by production platform

Download (93KB)
17. Figure 16. Structure of seropositivity (RBD, Nc) following completion of immunization with inactivated vaccines

Download (22KB)
18. Figure 17. Structure of seropositivity (RBD, Nc) following completion of immunization with vector vaccines

Download (24KB)
19. Figure 18. Structure of seropositivity (RBD, Nc) following completion of immunization with mRNA vaccines

Download (24KB)
20. Figure 18. Heat map of the regional distribution of SARS-CoV-2 seroprevalence

Download (273KB)
21. SUPPLIMENTARY MATERIALS FOR ARTICLE ID 2540
Download (216KB)

Copyright (c) 2023 Popova A.Y., Smirnov V.S., Egorova S.A., Vanyan A.V., Milichkina A.M., Bakunts N.G., Drozd I.V., Abovyan R.A., Ivanov V.A., Melik-Andreasyan G.G., Ramsay E.S., Palozyan G.O., Arbuzova T.V., Keshishyan A.S., Zhimbayeva O.B., Petrova O.A., Gubanova A.V., Razumovskaya A.P., Totolian A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».