The effect of Saposin D on the anti-tuberculosis immune response in experimental tuberculosis infection
- Authors: Shepelkova G.S.1, Evstifeev V.V.1, Avdienko V.G.1, Bocharova I.V.1, Yeremeev V.V.1
-
Affiliations:
- Central Tuberculosis Research Institute
- Issue: Vol 13, No 3 (2023)
- Pages: 439-445
- Section: ORIGINAL ARTICLES
- URL: https://journal-vniispk.ru/2220-7619/article/view/133194
- DOI: https://doi.org/10.15789/2220-7619-TEO-2029
- ID: 133194
Cite item
Full Text
Abstract
Saposins (Sap) are a subgroup of glycoproteins belonging to the Saposin-Like Proteins family. They are generated by the proteolytic processing of the common precursor prosaposin. Saposins localize primarily in the lysosomes and are required for the catabolism of glycosphingolipids. Saposins are involved in the presentation of lipid mycobacterial antigens on CD1 molecules. SapD is the most abundant saposin in normal tissues, where its concentration is three times higher than that of other saposins. SapD promotes the hydrolysis of ceramide by acid ceramidase in vivo, as evidenced by the accumulation of 〈-hydroxyl-ceramide in the kidneys and cerebellum of SapD-deficient mice. Accordingly, SapD-deficient animals show renal tubular degeneration and hydronephrosis, as well as progressive loss of Purkinje cells in the cerebellum, leading to ataxia. To date, no hereditary SapD deficiency has been identified in humans.Previously we had shown that macrophages derived from SAPD knockout mice suppress the growth of M. tuberculosis to a lesser extent than macrophages from wild-type mice. Moreover, compensation for the deficiency of SapD in knockout cells led to the restoration of their bactericidal function. Thus, SapD is an important component in the anti-TB immune response. However, it is not clear how SapD deficiency affects the in vivo antituberculosis immune response. In the model of experimental tuberculosis infection, it was shown that five weeks post infection the mycobacterial load in the lungs and spleens was significantly higher in SapD-ko mice than in wild-type mice. Analysis of the lung tissue cellular composition showed the differences between SapD-ko and B6 mice. Thus “naive” SapD-ko mice are characterized by a larger quantity of macrophages compared to B6 mice. It was also shown that five weeks after infection, SapD-ko mice differ from wild-type mice in a more pronounced neutrophilic infiltration of the lung tissue. A study of the propensity for apoptosis of cells in the lung tissue of SapD-ko mice showed that the content of apoptotic cells in the lungs of SapD knockout mice three weeks after infection was significantly higher than in wild-type B6 mice. Thus, SapD deficiency leads to a significant increase in inflammation during experimental tuberculosis infection, and also affects the predisposition of lung cells to apoptosis.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Galina S. Shepelkova
Central Tuberculosis Research Institute
Author for correspondence.
Email: shepelkovag@yahoo.com
ORCID iD: 0000-0001-6854-7932
SPIN-code: 7436-4454
Scopus Author ID: 26665725800
PhD (Biology), Senior Researcher, Laboratory for Biotechnology, Department of Immunology
Russian Federation, 107564, Moscow, Yauza alley, 2Vladimir V. Evstifeev
Central Tuberculosis Research Institute
Email: vladimir-evstifeev@yandex.ru
PhD (Biology), Senior Researcher, Laboratory for Biotechnology, Department of Immunology
Russian Federation, 107564, Moscow, Yauza alley, 2Vadim G. Avdienko
Central Tuberculosis Research Institute
Email: vg_avdienko@mail.ru
SPIN-code: 8165-3530
Senior Researcher, Laboratory for Biotechnology, Department of Immunology
Russian Federation, 107564, Moscow, Yauza alley, 2Irina V. Bocharova
Central Tuberculosis Research Institute
Email: i.bocharova@ctri.ru
SPIN-code: 6200-0329
Researcher, Department of Immunology
Russian Federation, 107564, Moscow, Yauza alley, 2Vladimir V. Yeremeev
Central Tuberculosis Research Institute
Email: yeremeev56@mail.ru
ORCID iD: 0000-0001-6608-7557
DSc (Medicine), Head of the Department of Immunology
Russian Federation, 107564, Moscow, Yauza alley, 2References
- Авдиенко В.Г., Бабаян С.С., Гусева А.Н. Количественные, спектральные и серодиагностические характеристики антимикобактериальных IgG-, IgM- и IgA-антител у больных туберкулезом легких // Проблемы туберкулеза и болезней легких. 2006. Т. 10. С. 47–55. [Avdienko V.G., Babaian S.S., Guseva A.N. Quantitative, spectral, and serodiagnostic characteristics of antimycobacterial IgG, IgM, and IgA antibodies in patients with pulmonary tuberculosis. Problemy tuberkuleza i boleznei legkikh = Problems of Tuberculosis and Lung Diseases, 2006, vol. 10, pp. 47–55. (In Russ.)]
- Еремеев В.В., Апт А.С. Сапозин-подобные белки в противоинфекционном иммунном ответе // Инфекция и иммунитет. 2012. Т. 2, № 3. C. 597–602. [Yeremeev V.V., Apt A.S. Saposin-like proteins in anti-infectious immune response. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2012, vol. 2, no. 3, pp. 597–602. (In Russ.)] doi: 10.15789/2220-7619-2012-3-597-602
- Шепелькова Г.С., Евстифеев В.В., Эргешов А.Э., Еремеев В.В. Влияние сапозина D на бактериостатическую функцию макрофагов при экспериментальной туберкулезной инфекции // Инфекция и иммунитет. 2021. Т. 11, № 3. C. 473–480. [Shepelkova G.S., Evstifeev V.V., Ergeshov A.E., Yeremeev V.V. Saposin D acting on macrophage bacteriostatic function in experimental tuberculosis infection. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2021, vol. 11, no. 3, pp. 473-480. (In Russ.)] doi: 10.15789/2220-7619-TEO-1386
- Garrido-Arandia M., Cuevas-Zuviría B., Díaz-Perales A., Pacios L. A comparative study of human saposins. Molecules, 2018, vol. 23: 422. doi: 10.3390/molecules23020422
- Gebai A., Gorelik A., Nagar B. Crystal structure of saposin D in an open conformation. J. Struc. Biol., 2018, vol. 204, no. 2, pp. 145–150. doi: 10.1016/j.jsb.2018.07.011
- Huang L., Nazarova E.V., Russell D.G. Mycobacterium tuberculosis: bacterial fitness within the host macrophage. Microbiol Spectr., 2019, vol. 7, no. 2: 10. doi: 10.1128/microbiolspec.BAI-0001-2019
- Kim M.-J., Wainwright H., Loketz M., Bekker L.G., Walther G.B., Dittrich C., Visser A., Wang W., Hsu F.F., Wiehart U., Tsenova L., Kaplan G., Russell D.G. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol. Med., 2010, vol. 2, pp. 258–274. doi: 10.1002/emmm.201000079
- Kishimoto Y., Hiraiwa M., O’Brien J.S. Saposins: structure, function, distribution, and molecular genetics. J. Lipid. Res., 1992, vol. 33, no. 9, pp. 1255–1267.
- Khan A., Singh V.K., Hunter R.L., Jagannath C. Macrophage heterogeneity and plasticity in tuberculosis. J. Leukoc. Biol., 2019, vol. 106, no. 2, pp. 275–282. doi: 10.1002/JLB.MR0318-095RR
- Kolter T., Sandhoff K. Lysosomal degradation of membrane lipids. FEBS Lett., 2010, vol. 584, pp. 1700–1712. doi: 10.1016/ j.febslet.2009.10.021
- Matsuda J., Kido M., Tadano-Aritomi K., Ishizuka I., Tominaga K., Toida K., Takeda E., Suzuki K., Kuroda Y. Mutation in saposin D domain of sphingolipid activator protein gene causes urinary system defects and cerebellar Purkinje cell degeneration with accumulation of hydroxy fatty acid-containing ceramide in mouse. Hum. Mol. Genet., 2004, vol. 13, no. 21, pp. 2709–2723. doi: 10.1093/hmq/ddh281
- Nikonenko B.V., Averbakh MM Jr, Lavebratt C., Schurr E., Apt A.S. Comparative analysis of mycobacterial infections in susceptible I/St and resistant A/Sn inbred mice. Tuber. Lung Dis., 2000, vol. 80, no. 1, pp. 15–25. doi: 10.4049/jimmunol.165.10.5921
- O’Brien J.S., Kishimoto Y. Saposin proteins: structure, function, and role in human lysosomal storage disorders. FASEB J., 1991, vol. 5, pp. 301–308. doi: 10.1096/fasebj.5.3.2001789
- Olmeda B., García-Álvarez B., Pérez-Gil J. Structure–function correlations of pulmonary surfactant protein SP-B and the saposin-like family of proteins. Eur. Biophys. J., 2013, vol. 42, pp. 209–222. doi: 10.1007/s00249-012-0858-9
- Rossmann M., Schultz-Heienbrok R., Behlke J., Remmel N., Alings C., Sandhoff K., Saenger W., Maier T. Crystal structures of human saposins C and D: implications for lipid recognition and membrane interactions. Structure, 2008, vol. 16, pp. 809–817. doi: 10.1016/j.str.2008.02.016
- Shepelkova G., Evstifeev V., Majorov K., Bocharova I., Apt A. Therapeutic effect of recombinant mutated interleukin 11 in the mouse model of tuberculosis. J. Infect. Dis., 2016, vol. 214, no. 3, pp. 496–501. doi: 10.1093/infdis/jiw176
- Weiss G., Schaible U.E. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev., 2015, vol. 264, no. 1, pp. 182–203. doi: 10.1111/imr.12266
- Winau F., Schwierzeck V., Hurwitz R., Remmel N., Sieling P.A., Modlin R.L., Porcelli S.A., Brinkmann V., Sugita M., Sandhoff K., Kaufmann S.H., Schaible U.E. Saposin C is required for lipid presentation by human CD1b. Nat. Immunol., 2004, vol. 5, no. 2, pp. 169–174. doi: 10.1038/ni1035
- World Health Organization. Global Tuberculosis Report 2021. URL: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2021.
Supplementary files
