Assessment of formation and durability of adaptive immunity in COVID-19 convasescents
- Authors: Ivanova I.A.1, Filippenko A.V.1, Trufanova A.A.1, Omelchenko N.D.1, Chemisova O.S.1, Vodopyanov A.S.1, Bereznyak E.A.1, Sokolova E.P.1, Noskov A.K.1, Totolyan A.A.2
-
Affiliations:
- Rostov-on-Don Anti-Plague Institute of Rospotrebnadzor
- St. Petersburg Pasteur Institute
- Issue: Vol 13, No 2 (2023)
- Pages: 319-328
- Section: ORIGINAL ARTICLES
- URL: https://journal-vniispk.ru/2220-7619/article/view/147827
- DOI: https://doi.org/10.15789/2220-7619-AOF-2107
- ID: 147827
Cite item
Full Text
Abstract
The study of adaptive immunity in COVID-19 convalescent patients is important, because no consensus on whether the disease severity affects formation and durability of COVID-19 immune response has been achieved. A comparative assessment of emergence and durability of sustained cellular and humoral immunity in convalescent patients with COVID-19 of varying severity was carried out. The study involved volunteers with asymptomatic (n = 30), moderate (n = 21) and severe (n = 12) COVID-19. The average age of the subjects was 47.3±12.5 years. The formation of cellular immunity was assessed by increased IFNγ production in response to 16–20 hour-long SARS-CoV-2-derived glycoprotein S (RBD) lymphocyte stimulation. To measure IFNγ level, the Gamma Interferon–IFA-BEST test system manufactured by Vector-Best JSC, Russia, was used. The humoral immune response was recorded by detecting SARS-CoV-2RBD-specific class G antibodies using the “SARS-CoV-2RBD-ELISA-Gamalei” test system (FSBI “NITSEM N.F. Gamalei” of the Ministry of Health of Russia). It was revealed that humoral and cellular immunity against SARS-CoV-2 proteins was formed in all COVID-19 convalescent patients. However, the number of subjects with adaptive immunity to COVID-19 and the duration of its preservation depends on the severity of the infection. A significant decrease in the number of subjects with cellular immunity was revealed in the group of severe COVID-19. Most of the volunteers in this group had class G immunoglobulins before the end of the follow-up. In this group, unlike the other two, no patients were identified in whom only the cellular arm of the immune response was activated. Volunteers who did not retain adaptive immunity to the COVID-19 pathogen appeared only by the end of the follow-up period. Among those recovered after moderate disease 7–8 months later there was a decrease in the number of people with cellular and humoral immunity. This process started earlier than in the group of patients who were asymptomatic and continued until the end of the study. The proportion of individuals with cellular immunity increased, and at later timepoint — with humoral immune response. By the end of the study, a high percentage of volunteers remained asymptomatically infected, having cellular and humoral immunity to SARS-CoV-2. Their number remained significantly higher than in the group of moderate COVID-19, but lower than in severe COVID-19. By the end of the study, an increased number of volunteers with solely cellular immune response was recorded in this group. At the end of the follow-up period, the number of volunteers with humoral immunity against SARS-CoV-2 remained higher compared to those with a cellular immune response.
Full Text
##article.viewOnOriginalSite##About the authors
Inna A. Ivanova
Rostov-on-Don Anti-Plague Institute of Rospotrebnadzor
Author for correspondence.
Email: ivanova_ia@antiplague.ru
PhD (Biology), Leading Researcher, Acting Head of the Immunology Laboratory
Russian Federation, Rostov-on-DonAnna V. Filippenko
Rostov-on-Don Anti-Plague Institute of Rospotrebnadzor
Email: ivanova_ia@antiplague.ru
Junior Researcher, Laboratory of Immunology
Russian Federation, Rostov-on-DonAnastasia A. Trufanova
Rostov-on-Don Anti-Plague Institute of Rospotrebnadzor
Email: ivanova_ia@antiplague.ru
Junior Researcher, Laboratory of Immunology
Russian Federation, Rostov-on-DonNatalya D. Omelchenko
Rostov-on-Don Anti-Plague Institute of Rospotrebnadzor
Email: ivanova_ia@antiplague.ru
PhD (Medicine), Senior Researcher Laboratory of Immunology
Russian Federation, Rostov-on-DonOlga S. Chemisova
Rostov-on-Don Anti-Plague Institute of Rospotrebnadzor
Email: ivanova_ia@antiplague.ru
Acting Head of the Laboratory “Сollection of Pathogenic Microorganisms”
Russian Federation, Rostov-on-DonAleksej S. Vodopyanov
Rostov-on-Don Anti-Plague Institute of Rospotrebnadzor
Email: ivanova_ia@antiplague.ru
PhD (Medicine), Leading Researcher, Laboratory of Molecular Biology of Natural Focal and Zoonotic Infections
Russian Federation, Rostov-on-DonElena A. Bereznyak
Rostov-on-Don Anti-Plague Institute of Rospotrebnadzor
Email: ivanova_ia@antiplague.ru
PhD (Biology), Senior Researcher, Laboratory of Natural Focal and Zoonotic Infections
Russian Federation, Rostov-on-DonElena P. Sokolova
Rostov-on-Don Anti-Plague Institute of Rospotrebnadzor
Email: ivanova_ia@antiplague.ru
PhD (Biology), Junior Researcher, Epidemiology Department
Russian Federation, Rostov-on-DonAleksej K. Noskov
Rostov-on-Don Anti-Plague Institute of Rospotrebnadzor
Email: ivanova_ia@antiplague.ru
Director
Russian Federation, Rostov-on-DonAreg A. Totolyan
St. Petersburg Pasteur Institute
Email: ivanova_ia@antiplague.ru
RAS Full Member, DSc (Medicine), Professor,Director
Russian Federation, St. PetersburgReferences
- Потеряев Д.А., Аббасова С.Г., Игнатьева П.Е., Стрижакова О.М., Колесник С.В., Хамитов Р.А. Оценка Т-клеточного иммунитета к SARS-CoV-2 у переболевших и вакцинированных против COVID-19 лиц с помощью ELISPOT набора ТиграТест® SARS-CoV-2 // БИОпрепараты. Профилактика, диагностика, лечение. 2021. Т. 21, № 3. С. 178–192. [Poteryaev D.A., Abbasova S.G., Ignatieva P.E., Strizhakova O.M., Kolesnik S.V., Khamitov R.A. Assessment of T-cell immunity to SARS-CoV-2 in persons who have been ill and vaccinated against COVID-19 using ELISPOT kit TigraTest® SARS-CoV-2. BIOpreparaty. Profilaktika, diagnostika, lechenie = Biopreparations. Prevention, Diagnosis, Treatment, 2021, vol. 21, no. 3, pp. 178–192. (In Russ.)] doi: 10.30895/2221-996X-2021-21-3-178-192
- Achiron A., Gurevich M., Falb R., Dreyer-Alster S., Sonis P., Mandel M. SARS-CoV-2 antibody dynamics and B-cell memory response over time in COVID-19 convalescent subjects. Clin. Microbiol. Infect., 2021, vol. 27, no. 9, pp. 1349.e1–1349.e6. doi: 10.1016/j.cmi.2021.05.008
- Ahluwalia P., Vaibhav K., Ahluwalia M., Mondal A.K., Sahajpal N., Rojiani A.M., Kolhe R. Infection and immune memory: variables in robust protection by vaccines against SARS-CoV-2. Front. Immunol., 2021, no. 12: 660019. doi: 10.3389/fimmu.2021.660019
- Breton G., Mendoza P., Hagglof T., Oliveira T.Y., Schaefer-Babajew D., Gaebler C., Turroja M., Hurley A., Caskey M., Nussenzweig M.C. Persistent cellular immunity to SARS-CoV-2 infection. J. Exp. Med., 2021, vol. 218, no. 4: e20202515. doi: 10.1084/jem.20202515
- Cassaniti I., Percivalle E., Bergami F., Piralla A., Comolli G., Bruno R., Vecchia M., Sambo M., Colaneri M., Zuccaro V., Benazzo M., Robotti C., Calastri A., Maiorano E., Ferrari A., Cambiè G., Baldanti F. SARS-CoV-2 specific T-cell immunity in COVID-19 convalescent patients and unexposed controls measured by ex vivo ELISpot assay. Clin. Microbiol. Infect., 2021, vol. 27, no. 7, pp. 1029–1034. doi: 10.1016/j.cmi.2021.03.010
- Chan Y.-H., Fong S.-W., Poh C.-M., Carissimo G., Yeo N.K.-W., Amrun S.N., Goh Y.S., Lim J., Xu W., Chee R.S.-L., Torres-Ruesta A., Lee C.Y-P., Tay M.Z., Chang Z.W., Lee W.-H., Wang B., Tan S.-Y., Kalimuddin S., Young B.E., Leo Y.-S., Wang C.-I., Lee B., Rötzschke O., Lye D.C., Renia L., Ng L.F. A symptomatic COVID-19: disease tolerance with efficient anti-viral immunity against SARS-CoV-2. EMBO Mol. Med., 2021, no. 13: e14045. doi: 10.15252/emmm.202114045
- Chen Z., Wherry E.J. T cell responses in patients with COVID-19. Nat. Rev. Immunol., 2020, no. 206, pp. 529–536. doi: 10.1038/s41577-020-0402-6
- De Angelis M.L., Francescangeli F., Rossi R., Giuliani A., De Maria R., Zeuner A. Repeated exposure to subinfectious doses of SARS-CoV-2 may promote t cell immunity and protection against severe COVID-19. Viruses, 2021, no. 13: 961. doi: 10.3390/v13060961
- Dwyer C.J., Cloud C.A., Wang C., Heidt P., Chakraborty P., Duke T.F., McGue S., Jeffcoat B., Dunne J., Johnson L., Choi S., Nahhas G.J., Gandy A.S., Babic N., Nolte F.S., Howe P., Ogretmen B., Gangaraju V.K., Tomlinson S., Madden B., Bridges T., Flume P.A., Wrangle J., Rubinstein M.P., Baliga P.K., Nadig S.N., Mehrotra S. Comparative analysis of antibodies to SARS-CoV-2 between asymptomatic and convalescent patients. iScience, 2021, vol. 24, no. 6: 102489. doi: 10.1016/j.isci.2021.102489
- Gallais F., Velay A., Nazon C., Wendling M-J, Partisani M., Sibilia J., Intrafamilial exposure to SARS-CoV-2 associated with cellular immune response without seroconversion, France. Emerg. Infect. Diseases, 2021, vol. 27, no. 1, pp. 113–121. doi: 10.3201/eid2701.203611
- Gallais F., Velay A., Wendling M.-J., Nazon C., Partisani M., Sibilia J., Candon S., Fafi-Kremer S. Intrafamilial exposure to SARS-CoV-2 induces cellular immune response without seroconversion. medRxiv, 2020.06.21.2013244, Preprint, 2020.doi: 10.1101/2020.06.21.20132449
- Gerhards C., Thiaucourt M., Kittel M., Becker C., Ast V., Hetjens M., Neumaier M., Haselmann V. Longitudinal assessment of anti-SARS-CoV-2 antibody dynamics and clinical features following convalescence from a COVID-19 infectionnt. J. Infect. Dis., 2021, no. 107, pp. 221–227. doi: 10.1016/j.ijid.2021.04.080
- Israelow B., Mao T., Klein J., Song E., Menasche B., Omer S.B., Iwasaki A. Adaptive immune determinants of viral clearance and protection in mouse models of SARS-CoV-2. Sci. Immunol., 2021, vol. 6, no. 64: eabl4509. doi: 10.1126/sciimmunol.abl4509
- Jagannathan P., Wang T.T. Immunity after SARS-CoV-2 infections. Nat. Immunol., 2021, vol. 22, no. 5, pp. 539–540. doi: 10.1038/s41590-021-00923-3
- Kedl R.M.J. Down but far from out: the durability of SARS-CoV-2 immunity after asymptomatic infection. Exp. Med., 2021, vol. 218, no. 5: e20210359. doi: 10.1084/jem.20210359
- Korobova Z.R., Zueva E.V., Arsentieva N.A., Batsunov O.K., Liubimova N.E., Khamitova I.V., Kuznetsova R.N., Rubinstein A.A., Savin T.V., Stanevich O.V., Kulikov A.N., Pevtsov D.E., Totolian A.A. Changes in anti-SARS-CoV-2 IgG subclasses over time and in association with disease severity. Viruses, 2022, no. 14: 941. doi: 10.3390/v14050941
- Kudryavtsev I.V., Arsentieva N.A., Batsunov O.K., Korobova Z.R., Khamitova I.V., Isakov D.V., Kuznetsova R.N., Rubinstein A.A., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Sharapova M.A., Pevtcov D.E., Totolian A.A. Alterations in B cell and follicular T-helper cell subsets in patients with acute COVID-19 and COVID-19 convalescents. Curr. Iss. Mol. Biol., 2022, no. 44, pp. 194–205. doi: 10.3390/cimb4401001
- Le Bert N., Clapham H.E., Tan A.T., Chia W.N., Tham C.Y.L., Lim J.M., Kunasegaran K., Tan L.W.L., Dutertre C.-A., Shankar N., Lim J.M.E., Sun L.J., Zahari M., Tun Z.M., Kumar V., Lim B.L., Lim S.H., Chia A., Tan Y.-J., Tambyah P.A., KalimuddinS., Lye D., Low J.G.H., Wang L.-F., Wan W.Y., Hsu L.Y., Bertoletti A., Tam C.C. Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J. Exp. Med., 2021, vol. 218, no. 5: e20202617. doi: 10.1084/jem.20202617
- Lin L., Lu L., Cao W., Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg. Microbes Infect., 2020, vol. 9, no. 1, pp. 727–732. doi: 10.1080/22221751.2020.1746199
- Lippi G., Henry B.M. How will emerging SARS-CoV-2 variants impact herd immunity? Ann. Transl. Med., 2021, vol. 9, no. 7: 585. doi: 10.21037/atm-21-893
- Liu J., Li S., Liu J., Liang B., Wang X., Wang H., Li W., Tong Q., Yi J., Zhao L., Xiong L., Guo C., Tian J., Luo J., Yao J., Pang R., Shen H., Peng C., Liu T., Zhang Q., Wu J., Xu L., Lu S., Wang B., Weng Z., Han C., Zhu H., Zhou R., Zhou H., Chen X., Ye P., Zhu B., Wang L., Zhou W., He S., He Y., Jie S., Wei P., Zhang J., Lu Y., Wang W., Zhang L., Li L., Zhou F., Wang J., Dittmer U., Lu M., Hu Y., Yang D., Zheng X. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine, 2020, no. 55: 102763. doi: 10.1016/j.ebiom.2020.102763
- Mazzoni A., Maggi L., Capone M., Vanni A., Spinicci M., Salvati L., Kiros S.T., Semeraro R., Pengue L., Colao M.G., Magi A., Rossolini G.M., Liotta F., Cosmi L., Bartoloni A., Annunziato F. Heterogeneous magnitude of immunological memory to SARS-CoV-2 in recovered individuals. Clin. Transl. Immunol., 2021, vol. 10, no. 5: e1281. doi: 10.1002/cti2.1281
- Ni L., Ye F., Cheng M.-L., Feng Y., Deng Y.-Q., Zhao H., Wei P., Ge J., Gou M., Li X., Sun L., Cao T., Wang P., Zhou C., Zhang R., Liang P., Guo H., Wang X., Qin C.-F., Chen F., Dong C. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent. Individuals Immunity, 2020, vol. 52, no. 6, pp. 971–977. doi: 10.1016/J.IMMUNI.2020.04.023
- Oja A.E., Saris A., Ghandour C.A., Kragten N.A.M., Hogema B.M., Nossent L.M., Heunks A., Cuvalay S., Slot E., Swaneveld F.H., Vrielink H., Rispens T., van der Schoot E.J.E., van Lier R.A.W., Ten Brinke A., Hombrink P. Divergent SARS-CoV-2-specific T and B cell responses in severe but not mild COVID-19. bioRxiv, 2020.06.18.159202, Preprint, 2020. doi: 10.1101/2020.06.18.159202
- Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y. Xie C., Ma K., Shang K., Wang W., Tian D.S. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis., 2020, no. 71, pp. 762–768. doi: 10.1093/cid/ciaa248
- Rockstroh А., Wolf J., Fertey J., Kalbitz S., Schroth S., Lübbert C., Ulbert S., Borte S. Correlation of humoral immune responses to different SARS-CoV-2 antigens with virus neutralizing antibodies and symptomatic severity in a German COVID-19 cohort. Emerg. Microbes Infect., 2021, vol. 10, no. 1, pp. 774–781. doi: 10.1080/22221751.2021.1913973
- Sekine T., Perez-Potti A., Rivera-Ballesteros O., Strålin K., Gorin J.B., Olsson A., Llewellyn-Lacey S., Kamal H., Bogdanovic G., Muschiol S., Wullimann D.J., Kammann T., Emgård J., Parrot T., Folkesson E.; Karolinska COVID-19 Study Group; Rooyackers O., Eriksson L.I., Henter J.I., Sönnerborg A., Allander T., Albert J., Nielsen M., Klingström J., Gredmark-Russ S., Björkström N.K., Sandberg J.K., Price D.A., Ljunggren H.G., Aleman S., Buggert M. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell, 2020, vol. 183, no. 1, pp. 158–168.e14. doi: 10.1016/j.cell.2020.08.017
- Shah V.K., Firmal P., Alam A., Ganguly D., Chattopadhyay S. Overview of immune response during SARS-CoV-2 infection: lessons from the past. Front. Immunol., 2020, no. 11: 1949. doi: 10.3389/FIMMU.2020.01949
- Siggins M.K., Thwaites R.S., Openshaw P.J.M. Durability of immunity to SARS-CoV-2 and other respiratory viruses trends. Microbiol., 2021, vol. 29, no. 7, pp. 648–662. doi: 10.1016/j.tim.2021.03.016
- Tan A.T., Linster M., Tan C.W., Bert N.L., Chia W.N., Kunasegaran K., Zhuang Y., Tham C.Y.L., Chia A., Smith G.J.D., Young B., Kalimuddin S., Low J.G.H., Lye D., Wang L.-F., Bertoletti A. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep., 2021, vol. 34, no. 6: 108728 doi: 10.1016/j.celrep.2021.108728
- Tavukcuoglu E., Horzum U., Cagkan Inkaya A., Unal S., Esendagli G., Functional responsiveness of memory T cells from COVID-19 patients. Cell Immunol., 2021, no. 365: 104363. doi: 10.1016/j.cellimm.2021.104363
- Thieme C.J., Anft M., Paniskaki K., Blazquez-Navarro A., Doevelaar A., Seibert F., Hoelzer B., Konik M.J., Brenner T., Tempfer C., Watzl C., Dolff S., Dittmer U., Westhoff T.H., Witzke O., Stervbo U., Roch T., Babel N. The SARS-CoV-2 T-cell immunity is directed against the spike, membrane, and nucleocapsid protein and associated with COVID-19 severity. medRxiv, 2020.05.13.20100636, Preprint, 2020. doi: 10.1101/2020.05.13.20100636
- Turner J.S., Kim W., Kalaidina E., Goss C.W., Rauseo A.M., Schmitz A.J., Hansen L., Haile A., Klebert M.K., Pusic I., O’Halloran J.A., Presti R.M., Ellebedy A.H. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature, 2021, no. 595, pp. 421–425. doi: 10.1038/s41586-021-03647-4
- Vanshylla K., Di Cristanziano V., Kleipass F., Dewald F., Schommers P., Gieselmann L., Gruell H., Schlotz M., Ercanoglu M.S., Stumpf R., Mayer P., Zehner M., Heger E., Johannis W., Horn C., Suárez I., Jung N., Salomon S., Eberhardt K.A., Gathof B., Fätkenheuer G., Pfeifer N., Eggeling R., Augustin M., Lehmann C., Klein F. Kinetics and correlates of the neutralizing antibody response to SARS-CoV-2 infection in humans. Cell Host Microbe, 2021, vol. 29, no. 6, pp. 917–929.e4. doi: 10.1016/j.chom.2021.04.015
- White H.N. B-cell memory responses to variant viral antigens. Viruses, 2021, vol. 13, no. 4: 565. doi: 10.3390/v13040565
- Zhang F., Gan R., Zhen Z., Hu X., Li X., Zhou F., Liu Y., Chen C., Xie S., Zhang B., Wu X., Huang Z. Adaptive immune responses to SARS-CoV-2 infection in severe versus mild individuals. Signal Transduct. Target Ther., 2020, vol. 5, no. 1: 156. doi: 10.1038/s41392-020-00263-y
Supplementary files
