Optimization and validation of flow cytometry method for quantification of SARS-CoV-2 antigen-reactive human memory T cells
- Authors: Strizhakova O.M.1, Pershin A.S.1, Kazarov A.A.1, Lyagoskin I.V.1, Bahareva Y.A.1, Vasil'ev A.P.1, Nikonova Y.A.1, Egorova I.Y.1, Shukurov R.R.1, Khamitov R.A.1
-
Affiliations:
- JSC “GENERIUM”
- Issue: Vol 13, No 4 (2023)
- Pages: 642-652
- Section: ORIGINAL ARTICLES
- URL: https://journal-vniispk.ru/2220-7619/article/view/158870
- DOI: https://doi.org/10.15789/2220-7619-OAV-2084
- ID: 158870
Cite item
Full Text
Abstract
A proper and representative monitoring of SARS-CoV-2 herd immunity including a long-term health impact on recovered patients and vaccinated individuals is of great importance. For this, a monitoring campaign should assesses both humoral and T-cell immune arms. Upon that, analyzing antigen specific-cell activation and cellular phenotype are informative. We developed a flow cytometry method for detection of intracellular IFNγ-producing antigen-reactive T cells after exposure of human peripheral blood mononuclear cells (PBMC) to SARS-CoV-2 virus antigens. The method was validated according to the following characteristics: sensitivity, specificity, precision, and robustness. We used positive samples from donors recovered from COVID-19 and negative samples from donors who had no contact with COVID-19 patients and lacking antibodies to SARS-CoV-2. All samples were tested by laboratory methods. Peripheral blood mononuclear cells were isolated from donor blood by centrifugation in a Ficoll density gradient. Specific T cells were stimulated with S-protein as well as N, M, ORF3a, and ORF7a protein peptides to count IFNγ-producing T cells by flow cytometer. The data were statistically analyzed. The area limited by ROC-curve and false positive rate (AUC) for CD4 and CD8 cells was from 0.97 to 1.00. Precision was considered acceptable because the coefficient of variation for all PBCM did not exceed 20%. Robustness was confirmed for frozen and freshly prepared PBMC samples. The thresholds levels to recognize immune and non-immune samples were defined for CD4-positive T-cells (0.029%) and CD8-positive T-cells (0.064–0.068%). Also, acceptance criteria for positive and negative controls were defined. Based on the validation, the suitability of the method “Evaluation of antigen-reactive T cells that produce intracellular IFN in response to SARS-CoV-2 virus antigens by flow cytometry” was confirmed. The method allows for reliable data that was used to characterize standard control samples for internal quality control of TigraTest® SARS-CoV-2 kits.
Full Text
##article.viewOnOriginalSite##About the authors
Olga M. Strizhakova
JSC “GENERIUM”
Email: Strizhakova@ibcgenerium.ru
ORCID iD: 0000-0003-0023-0028
PhD (Veterinary), Researcher, Laboratory of Biological Methods, Analytical Methods Division, Department of the Pharmaceutical Analysis
Russian Federation, Volginsky, Petushinsky District, Vladimir RegionAndrey S. Pershin
JSC “GENERIUM”
Author for correspondence.
Email: aspershin@generium.ru
ORCID iD: 0000-0002-5099-3050
SPIN-code: 7558-3934
PhD (Veterinary), Researcher, Laboratory of Biological Methods, Analytical Methods Division, Department of the Pharmaceutical Analysis
Russian Federation, Volginsky, Petushinsky District, Vladimir RegionAlexander A. Kazarov
JSC “GENERIUM”
Email: kazarov@ibcgenerium.ru
ORCID iD: 0000-0003-0682-6113
Senior Researcher, Laboratory of Immunochemistry, Analytical Methods Division, Department of the Pharmaceutical Analysis
Russian Federation, Volginsky, Petushinsky District, Vladimir RegionIvan V. Lyagoskin
JSC “GENERIUM”
Email: lyagoskin@ibcgenerium.ru
ORCID iD: 0000-0002-9058-1106
PhD (Biology), Head of the Analytical Methods Division, Department of the Pharmaceutical Analysis
Russian Federation, Volginsky, Petushinsky District, Vladimir RegionYana A. Bahareva
JSC “GENERIUM”
Email: yabahareva@generium.ru
Chemist, Laboratory of Biological Methods, Analytical Methods Division, Department of the Pharmaceutical Analysis
Russian Federation, Volginsky, Petushinsky District, Vladimir RegionAlexander P. Vasil'ev
JSC “GENERIUM”
Email: vasilev@ibcgenerium.ru
Junior Researcher, Laboratory of Biological Methods, Analytical Methods Division, Department of the Pharmaceutical Analysis
Russian Federation, Volginsky, Petushinsky District, Vladimir RegionYulia A. Nikonova
JSC “GENERIUM”
Email: yanikonova@ibcgenerium.ru
Researcher, Laboratory of Biological Methods, Analytical Methods Division, Department of the Pharmaceutical Analysis
Russian Federation, Volginsky, Petushinsky District, Vladimir RegionIrina Yu. Egorova
JSC “GENERIUM”
Email: iyegorova@generium.ru
ORCID iD: 0000-0001-7996-9321
Head of the Group of Diagnostic Test Systems, Division of Molecular Diagnostics, Department of the Pharmaceutical Analysis
Russian Federation, Volginsky, Petushinsky District, Vladimir RegionRahim R. Shukurov
JSC “GENERIUM”
Email: Shukurov@ibcgenerium.ru
ORCID iD: 0000-0002-6532-7835
PhD (Biology), Director of the Department of the Pharmaceutical Analysis
Russian Federation, Volginsky, Petushinsky District, Vladimir RegionRavil A. Khamitov
JSC “GENERIUM”
Email: Khamitov@ibcgenerium.ru
ORCID iD: 0000-0002-1314-894X
DSc (Medicine), Professor, Vice President of Research and Development
Russian Federation, Volginsky, Petushinsky District, Vladimir RegionReferences
- ГОСТ Р 5302.3-2008. Национальный стандарт Российской Федерации. Технологии лабораторные клинические. Требования к качеству клинических лабораторных исследований. Часть 3. Правила оценки клинической информативности лабораторных тестов. [State Standard Р 5302.3-2008. Clinical laboratory technologies. Requirements for quality of clinical laboratory tests. Part 3. Assessment of laboratory tests clinical significance (In Russ.)]
- Потеряев Д.А., Аббасова C.Г., Игнатьева П.Е., Стрижакова О.М., Колесник С.В., Хамитов Р.А. Оценка Т-клеточного иммунитета к SARS-CoV-2 у переболевших и вакцинированных против COVID-19 лиц с помощью ELISPOT набора ТиграТест® SARS-CoV-2 // БИОпрепараты. Профилактика, диагностика, лечение. 2021. Т. 21, № 3. С. 178–192. [Poteryaev D.A., Abbasova S.G., Ignatyeva P.E., Strizhakova O.M., Kolesnik S.V., Khamitov R.A. Assessment of T-cell immunity to SARS-CoV-2 in COVID-19 convalescents and vaccinated subjects, using TigraTest® SARS-CoV-2 ELISPOT kit. BIOpreparaty. Profilaktika, diagnostika, lechenie = BIOpreparations. Prevention, Diagnosis, Treatment, 2021, vol. 21, no. 3, pp. 178–192. (In Russ.)] doi: 10.30895/2221-996X-2021-21-3-178-192
- РМГ 61-2010. Рекомендации по межгосударственной стандартизации. Государственная система обеспечения единства измерений. Показатели точности, правильности, прецизионности методик количественного химического анализа. Методы оценки. Москва, 2013. [State system for ensuring the uniformity of measurements. Accuracy, trueness and precision measures of the procedures for quantitative chemical analysis. Methods of evaluation. Moscow, 2013. (In Russ.)]
- Barnett D., Louzao R., Gambell P., De J., Oldaker T., Hanson C.A., ICSH/ICCS Working Group. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS — part IV — postanalytic considerations. Cytometry B Clin. Cytom., 2013, vol. 84, pp. 309–314. doi: 10.1002/cyto.b.21107
- Bert N.L., Tan A.T., Kunasegaran K., Tham C.Y.L., Hafezi M., Chia A., Chng M., Lin M., Tan N., Linster M., Chia W.N., Chen M.I.-C., Wang L.-F., Ooi E.E., Kalimuddin S., Tambyah P.A., Low J.G.-H., Tan Y.-J., Bertoletti A. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature, 2020, vol. 584, pp. 457–462. doi: 10.1038/s41586-020-2550-z
- Beveridge N.E.R., Price D.A., Casazza J.P., Pathan A.A., Sander C.R., Asher T.E., Ambrozak D.R., Precopio M.L., Scheinberg P., Alder N.C., Roederer M., Koup R.A., Douek D.C., Hill A.V., McShane H. Immunisation with BCG and recombinant MVA85A induces long-lasting, polyfunctional Mycobacterium tuberculosis-specific CD4+ memory T lymphocyte populations. Eur. J. Immunol., 2007, vol. 37, pp. 3089–3100. doi: 10.1002/eji.200737504
- Braun J., Loyal L., Frentsch M., Wendisch D., Georg P., Kurth F., Hippenstiel S., Dingeldey M., Kruse B., Fauchere F., Baysal E., Mangold M., Henze L., Lauster R., Mall M.A., Beyer K., Röhmel J., Voigt S., Schmitz J., Miltenyi S., Demuth I., Müller M.A., Hocke A., Witzenrath M., Suttorp N., Kern F., Reimer U., Wenschuh H., Drosten C., Corman V.M., Giesecke-Thiel C., Sander L.E., Thiel A. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature, 2020, vol. 587, pp. 270–274. doi: 10.1038/s41586-020-2598-9
- Britten C.M., Janetzki S., Butterfield L.H., Ferrari G., Gouttefangeas C., Huber C., Kalos M., Levitsky H.I., Maecker H.T., Melief C.J.M., O’Donnell-Tormey J., Odunsi K., Old L.J., Ottenhoff T.H.M., Ottensmeier C., Pawelec G., Roederer M., Roep B.O., Romero P., Van der Burg S.H., Walter S., Hoos A., Davis M.M. T cell assays and MIATA: the essential minimum for maximum impact. Immunity, 2012, vol. 37, no. 1, pp. 1–2. doi: 10.1016/j.immuni.2012.07.010
- Chen J., Liu X., Zhang X., Lin Y., Liu D., Xun J., Wang Z., Gu L., Li Q., Yin D., Yang J., Lu H. Decline in neutralising antibody responses, but sustained T cell immunity, in COVID-19 patients at 7 months post-infection. Clin. Transl. Immunol., 2021, vol. 10, no. 7: e1319. doi: 10.1002/cti2.1319
- Darrah P.A., Patel D.T., De Luca P.M., Lindsay R.W.B., Davey D.F., Flynn B.J., Hoff S.T., Andersen P., Reed S.G., Morris S.L., Roederer M., Seder R.A. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med., 2007, vol. 13, no. 7, pp. 843–850. doi: 10.1038/nm1592
- Davis B.H., Dasgupta A., Kussick S., Han J.Y., Estrellado A., Group I.I.W. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS — part II — preanalytical issues. Cytometry Part B (Clinical Cytometry), 2013, vol. 84, no. 5, pp. 286–290. doi: 10.1002/cyto.b.21105
- Diniz M.O., Mitsi E., Swadling L., Rylance J., Johnson M., Goldblatt D., Ferreira D., Maini M.K. Airway-resident T cells from unexposed individuals cross-recognize SARS-CoV-2. Nat. Immunol., 2022, vol. 23, no. 9, pp. 1324–1329. doi: 10.1038/s41590-022-01292-1
- Guo L., Wang G., Wang Y., Zhang Q., Ren L., Gu X., Huang T., Zhong J., Wang Y., Wang X., Huang L., Xu L., Wang C., Chen L., Xiao X., Peng Y., Knight J.C., Dong T., Cao B., Wang J. SARS-CoV-2-specific antibody and T-cell responses 1 year after infection in people recovered from COVID-19: a longitudinal cohort study. Lancet, 2022, vol. 3, no. 5, pp. 348–356. doi: 10.1016/S2666-5247(22)00036-2
- Kundu, R., Narean, J.S., Wang, L. Fenn J., Pillay T., Fernandez N.D., Conibear E., Koycheva A., Davies M., Tolosa-Wright M., Hakki S., Varro R., McDermott E., Hammett S., Cutajar J., Thwaites R.S., Parker E., Rosadas C., McClure M., Tedder R., Taylor G.P., Dunning J., Lalvani A. Cross-reactive memory T cells associate with protection against SARS-CoV-2 infection in COVID-19 contacts. Nat. Commun., 2022, vol. 13, no. 1: 80. doi: 10.1038/s41467-021-27674-x
- Liu A.Y., De Rosa S.C., Guthrie B.L., Choi R.Y., Kerubo-Bosire R., Richardson B.A., Kiarie J., Farquhar C., Lohman-Payne B. High background in ELISpot assays is associated with elevated levels of immune activation in HIV-1-seronegative individuals in Nairobi. Immun. Inflamm. Dis., 2018, vol. 6, no. 3, pp. 392–401. doi: 10.1002/iid3.231
- Maecker H.T., Rinfret A., D’Souza P., Darden J., Roig E., Landry C., Hayes P., Birungi J., Anzala O., Garcia M., Harari A., Frank I., Baydo R., Baker M., Holbrook J., Ottinger J., Lamoreaux L., Epling C.L., Sinclair E., Suni M.A., Punt K., Calarota S., El-Bahi S., Alter G., Maila H., Kuta E., Cox J., Gray C., Altfeld M., Nougarede N., Boyer J., Tussey L., Tobery T., Bredt B., Roederer M., Koup R., Maino V.C., Weinhold K., Pantaleo G., Gilmour J., Horton H., Sekaly R.P. Standardization of cytokine flow cytometry assays. BMC Immunol., 2005, vol. 6: 13. doi: 10.1186/1471-2172-6-13
- Mateus J., Grifoni A., Tarke A., Sidney J., Ramirez S.I., Dan J.M., Burger Z.C., Rawlings S.A., Smith D.M., Phillips E., Mallal S., Lammers M., Rubiro P., Quiambao L., Sutherland A., Yu E.D., da Silva Antunes R., Greenbaum J., Frazier A., Markmann A.J., Premkumar L., de Silva A., Peters B., Crotty S., Sette A., Weiskopf D. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science, 2020, vol. 370, no. 6512, pp. 89–94. doi: 10.1126/science.abd3871
- Moderbacher C.R., Grifoni A., Weiskopf D., Ramirez S.I., Mateus J., Dan J.M., , Rawlings S.A., Sutherland A., Premkumar L., Jadi R.S., Marrama D., Aravinda de Silva M., Frazier A., Carlin A.F., Greenbaum J.A., Peters B., Krammer F., Smith D.M., Crotty S., Sette A. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell, 2020, vol. 181, no. 7, pp. 1489–1501.e15. doi: 10.1016/j.cell.2020.05.015
- Nelde A., Bilich T., Heitmann J.S., Maringer Y., Salih H.R., Roerden M., Lübke M., Bauer J., Rieth J., Wacker M., Peter A., Hörber S., Traenkle B., Kaiser P.D., Rothbauer U., Becker M., Junker D., Krause G., Strengert M., Schneiderhan-Marra N., Templin M.F., Joos T.O., Kowalewski D.J., Stos-Zweifel V., Fehr M., Rabsteyn A., Mirakaj V., Karbach J., Jäger E., Graf M., Gruber L.C., Rachfalski D., Preuß B., Hagelstein I., Märklin M., Bakchoul T., Gouttefangeas C., Kohlbacher O., Klein R., Stevanović S., Rammensee H.G., Walz J.S. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat. Immunol., 2021, vol. 22, no. 1, pp. 74–85. doi: 10.1038/s41590-020-00808-x
- Nolan S., Vignal M., Klinger M., Dines J.N., Kaplan I.M., Svejnoha E., Craft T., Boland K., Pesesky M., Gittelman R.M., Snyder T.M., Gooley C.J., Semprini S., Cerchione C., Mazza M., Delmonte O.M., Dobbs K., Carreño-Tarragona G., Barrio S., Sambri V., Robins H.S. A large-scale database of T-cell receptor beta (TCRβ) sequences and binding associations from natural and synthetic exposure to SARS-CoV-2. Research Square, 2020. Version 1. doi: 10.21203/rs.3.rs-51964/v1
- Ogbe A., Kronsteiner B., Skelly D.T., Pace M., Brown A., Adland E., Adair K., Akhter H.D., Ali M., Ali S.E., Angyal A., Ansari M.A., Arancibia-Cárcamo C.V., Brown H., Chinnakannan S., Conlon C., de Lara C., de Silva T., Dold C., Dong T., Donnison T., Eyre D., Flaxman A., Fletcher H., Gardner J., Grist J.T., Hackstein C.P., Jaruthamsophon K., Jeffery K., Lambe T., Lee L., Li W., Lim N., Matthews P.C., Mentzer A.J., Moore S.C., Naisbitt D.J., Ogese M., Ogg G., Openshaw P., Pirmohamed M., Pollard A.J., Ramamurthy N., Rongkard P., Rowland-Jones S., Sampson O., Screaton G., Sette A., Stafford L., Thompson C., Thomson P.J., Thwaites R., Vieira V., Weiskopf D., Zacharopoulou P.; Oxford Immunology Network Covid-19 Response T Cell Consortium; Oxford Protective T Cell Immunology for COVID-19 (OPTIC) Clinical Team; Turtle L., Klenerman P., Goulder P., Frater J., Barnes E., Dunachie S. T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses. Nat. Commun., 2021, vol. 12, no. 1: 2055. doi: 10.1038/s41467-021-21856-3
- O’Hara D.M., Xu Y., Liang Z., Reddy M.P., Wu D.Y., Litwin V. Recommendations for the validation of flow cytometric testing during drug development: II assays. J. Immunol. Methods, 2011, vol. 363, no. 2, pp. 120–134. doi: 10.1016/j.jim.2010.09.036
- Peng Y., Mentzer A.J., Liu G., Yao X., Yin Z., Dong D., Dejnirattisai W., Rostron T., Supasa P., Liu C., Lopez-Camacho C., Slon-Campos J., Zhao Y., Stuart D., Paeson G., Grimes J., Antson F., Bayfield O.W., Hawkins D.E., Ker D.S., Turtle L., Subramaniam K., Thomson P., Zhang P., Dold C., Ratcliff J., Simmonds P., de Silva T., Sopp P., Wellington D., Rajapaksa U., Chen Y.L., Salio M., Napolitani G., Paes W., Borrow P., Kessler B., Fry J.W., Schwabe N.F., Semple M.G., Baillie K.J., Moore S., Openshaw P.J., Ansari A., Dunachie S., Barnes E., Frater J., Kerr G., Goulder P., Lockett T., Levin R., Cornall R.J., Conlon C., Klenerman P., McMichael A., Screaton G., Mongkolsapaya J., Knight J.C., Ogg G., Dong T. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol., 2020, vol. 21, no. 11, pp. 1336–1345. doi: 10.1038/s41590-020-0782-6
- Sekine T., Perez-Potti A., Rivera-Ballesteros O., Strålin K., Gorin J.B., Olsson A., Llewellyn-Lacey S., Kamal H., Bogdanovic G., Muschiol S., Wullimann D.J., Kammann T., Emgård J., Parrot T., Folkesson E., Rooyackers O., Eriksson L.I., Henter J-I., Sönnerborg A., Allander T., Albert J., Nielsen M., Klingström J., Gredmark-Russ S., Björkström N.K., Sandberg J.K., Price D.A., Ljunggren H.G., Aleman S., Buggert M. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell, 2020, vol. 183, no. 1, pp. 158–168. doi: 10.1016/j.cell.2020.08.017
- Shomuradova A.S., Vagida M.S., Sheetikov S.A., Zornikova K.V., Kiryukhin D., Titov A., Peshkova I.O., Khmelevskaya A., Dianov D.V., Malasheva M., Shmelev A., Serdyuk Y., Bagaev D.V., Pivnyuk A., Shcherbinin D.S., Maleeva A.V., Shakirova N.T., Pilunov A., Malko D.B., Khamaganova E.G., Biderman B., Ivanov A.V., Shugay M., Efimov G.A. SARS-CoV-2 epitopes are recognized by a public and diverse repertoire of human T cell receptors. Immunity, 2020, vol. 53, no. 6, pp. 1245–1257. doi: 10.1016/j.immuni.2020.11.004
- Tan C.C.S., Owen C.J., Tham C.Y.L., Bertoletti A., van Dorp L., Balloux F. Pre-existing T cell-mediated cross-reactivity to SARS-CoV-2 cannot solely be explained by prior exposure to endemic human coronaviruses. Infect. Genet. Evol., 2021, vol. 95: 105075. doi: 10.1016/j.meegid.2021.105075
- Tanqri S.,Vall H., Kaplan D., Hoffman B., Purvis N., Porwit A., Hunsberger B., Shankey T.V., Group I.I.W. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS — part III — analytical issues. Cytometry B. Clin. Cytom., 2013, vol. 84, no. 5, pp. 291–308. doi: 10.1002/cyto.b.21106
- Weiskopf D., Schmitz K.S., Raadsen M.P., Grifoni A., Okba N.M.A., Endeman H., van den Akker J.P.C., Molenkamp R., Koopmans M.P.G., van Gorp E.C.M., Haagmans B.L., de Swart R.L., Sette A., de Vries R.D. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci. Immunol., 2020, vol. 5, no. 48: eabd2071. doi: 10.1126/sciimmunol.abd2071
- Zweig M.H., Campbell G. Receiver-operating characteristics (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem., 1993, vol. 39, no. 4, pp. 561–577. doi: 10.1093/clinchem/39.4.561
Supplementary files
