Features of NK cell phenotype virus genotype-driven chronic viral hepatitis C

封面

如何引用文章

全文:

详细

Elimination of the hepatitis C virus (HCV) due to direct antiviral drug (DAD) action affects alteration in virus phenotype and, accordingly, NK cell functional activity. However, the published data are very contradictory. The aim of the study was to investigae alterations in NK cell subset phenotype after DAD treatment of HCV genotype-dependent chronic viral hepatitis C (CVHC) patients. Materials and methods. 111 CVHC patients and 21 healthy volunteers were examined. The diagnosis was established on epidemiological, clinical and laboratory data. All 111 subjects with CVHC received direct antiviral drugs Sofosbuvir and Velpatasvir for 12 weeks. The study of the NK cell phenotypes wwas analyzed by multicolor flow cytometry. Results. A decreased count of cytokine-producing along with increased frequency of cytotoxic NK cells were found in CVHC patients blood samples with various HCV genotypes prior to DAD treatment. The imbalance of cytotoxic cells with a high level of functional activity was also found in CVHC patients regardless of HCV genotype. The patients with HCV genotypes 1 and 3 showed significantly increased level of immunoregulatory NK cells. In addition, increased count of glycohydrolase (CD38) and ecto-5'-nucleotidase (CD73)-expressing NK cells were found in patients with HCV genotypes 1 and 3. Hence, such alterations in NK cell phenotype in CVHC patients were presented as sustained high viral load which peaking at carriers of HCV genotype 1 that was minimal in patients with HCV genotype 2. The most prominent change in NK cells after DAD treatment was found in CVHC patients with HCV genotype 2 (normalization of CD8-expressing NK cell subset composition and count). Only patients with HCV genotype 2 after treatment had increased frequencies of peripheral blood double-negative CD38–CD73– NK cells. Patients with HCV genotypes 1 and 3 also showed minimally improved in NK cell subset composition after DAD treatment. Conclusion. Evaluation of specific changes in NK cell phenotype during DAD treatment of CVHC patients driven by HCV genotype undoubtedly is of importance and high relevance. The results obtained are novel and complement the insights into CVHC immunopathogenesis. Analysis of NK cell phenotypes and functional activity in patients with CVHC may promote development of new methods for treating HCV infection.

作者简介

Andrei Savchenko

Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North

Email: aasavchenko@yandex.ru

DSc (Medicine), Professor, Head of the Laboratory of Cellular-Molecular Physiology and Pathology

俄罗斯联邦, Krasnoyarsk

Elena Tikhonova

Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Healthcare of the Russian Federation

Email: aasavchenko@yandex.ru

DSc (Medicine), Professor, Head of the Department of Infectious Diseases and Epidemiology with a course of Postgraduate Education

俄罗斯联邦, Krasnoyarsk

Anna Anisimova

Krasnoyarsk Interdistrict Clinical Emergency Hospital named after N.S. Karpovich

Email: aasavchenko@yandex.ru

Physician of Infectious Disease Ward

俄罗斯联邦, Krasnoyarsk

Igor Kudryavtsev

Institute of Experimental Medicine

编辑信件的主要联系方式.
Email: igorek1981@yandex.ru

PhD (Biology), Head of the Cell Immunology Laboratory, Department of Immunology, Institute of Experimental Medicine, Assistant Professor, Department of Immunology

俄罗斯联邦, 197376, Saint Petersburg, Academician Pavlov str., 12; Saint Petersburg

Vasilij Belenjuk

Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North

Email: dyh.88@mail.ru

Junior Researcher, Laboratory of Cellular-Molecular Physiology and Pathology

俄罗斯联邦, Krasnoyarsk

Alexandr Borisov

Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North

Email: 2410454@mail.ru

PhD (Medicine), Leading Researcher, Laboratory of Cellular-Molecular Physiology and Pathology

俄罗斯联邦, Krasnoyarsk

参考

  1. Борисов А.Г., Савченко А.А., Кудрявцев И.В. Особенности иммунного реагирования при вирусных инфекциях // Инфекция и иммунитет. 2015. Т. 5, № 2. С. 148–156. [Borisov G.A., Savchenko A.A., Kudryavtsev I.V. Features of the immune response during viral infection. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2015, vol. 5, no. 2, pp. 148–156. (In Russ.)] doi: 10.15789/2220-7619-2015-2-148-156
  2. Борисов А.Г., Савченко А.А., Тихонова Е.П. Современные методы лечения вирусного гепатита C. Красноярск: НИИ медицинских проблем Севера, 2017. 74 с. [Borisov A.G., Savchenko A.A., Tikhonova E.P. Modern methods of treating viral hepatitis C. Krasnoyarsk: Research Institute of Medical Problems of the North, 2017. 74 p. (In Russ.)]
  3. Кудрявцев И.В., Субботовская А.И. Опыт измерения параметров иммунного статуса с использованием шестицветного цитофлуориметрического анализа // Медицинская иммунология. 2015. Т. 17, № 1. С. 19–26. [Kudryavtsev I.V., Subbo-tovskaya A.I. Application of six-color flow cytometric analysis for immune profile monitoring. Meditsinskaya immunologiya = Medical Immunology (Russia), 2015, vol. 17, no. 1, pp. 19–26. (In Russ.)] doi: 10.15789/1563-0625-2015-1-19-26
  4. Орлова С.Н., Басханова М.В. Эффективность противовирусной терапии хронического гепатита С у пациентов с недифференцированной дисплазией соединительной ткани // Эпидемиология и инфекционные болезни. 2019. № 2. С. 61–67. [Orlova S.N., Baskhanova M.V. Efficiency of antiviral therapy for chronic hepatitis c in patients with undifferentiated connective tissue dysplasia. Epidemiologiya i infektsionnye bolezni = Epidemiology and Infectious Diseases, 2019, no. 2, pp. 64–67. (In Russ.)] doi: 10.18565/epidem.2019. 2.61-67
  5. Щаницына С.Е., Бурневич Э.З., Никулкина Е.Н., Филатова А.Л., Моисеев С.В., Мухин Н.А. Факторы риска неблагоприятного прогноза хронического гепатита С // Терапевтический архив. 2019. Т. 91, № 2. С. 59–66. [Shchanitcyna S.E., Burnevich E.Z., Nikulkina E.N., Filatova A.L., Moiseev S.V., Mukhin N.A. Risk factors of unfavorable prognosis of chronic C. Terapevticheskiy arkhiv = Therapeutic Archive, 2019, vol. 91, no. 2, pp. 59–66. (In Russ.)] doi: 10.26442/00403660.2019.02.000082
  6. Южанинова С.В., Сайдакова Е.В. Феномен иммунного истощения // Успехи современной биологии. 2017. Т. 137, № 1. С. 70–83. [Yuzhaninova S.V., Saidakova E.V. Immune exhaustion. Uspekhi sovremennoy biologii = Advances in Modern Biology, 2017, vol. 137, no. 1, pp. 70–83. (In Russ.)]
  7. Abel A.M., Yang C., Thakar M.S., Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front. Immunol., 2018, vol. 9, pp. 1869. doi: 10.3389/fimmu.2018.01869
  8. Anuforo O.U.U., Bjarnarson S.P., Jonasdottir H.S., Giera M., Hardardottir I., Freysdottir J. Natural killer cells play an essential role in resolution of antigen-induced inflammation in mice. Mol. Immunol., 2018, vol. 93, pp. 1–8. doi: 10.1016/ j.molimm.2017.10.019
  9. Badry A., Jaspers V.L.B., Waugh C.A. Environmental pollutants modulate RNA and DNA virus-activated miRNA-155 expression and innate immune system responses: Insights into new immunomodulative mechanisms. J. Immunotoxicol., 2020, vol. 17, no. 1, pp. 86–93. doi: 10.1080/1547691X. 2020.1740838
  10. Ben A.J., Neumann C.R., Mengue S.S. The brief medication questionnaire and Morisky-Green test to evaluate medication adherence. Rev. Saude Publica, 2012, vol. 46, no. 2, pp. 279–289. doi: 10.1590/s0034-89102012005000013
  11. Cichocki F., Grzywacz B., Miller J.S. Human NK cell development: one road or many? Front. Immunol., 2019, vol. 10: 2078. doi: 10.3389/fimmu. 2019.02078
  12. Deng X., Terunuma H. Harnessing NK cells to control metastasis. Vaccines (Basel), 2022, vol. 10, no. 12: 2018. doi: 10.3390/vaccines10122018
  13. Eldeeb M.K., Magour G.M., Bedair R.N., Shamseya M.M., Hammouda M.A. Study of Dickkopf-1 (DKK-1) in patients with chronic viral hepatitis C-related liver cirrhosis with and without hepatocellular carcinoma. Clin. Exp. Hepatol., 2020, vol. 6, no. 2, pp. 85–91. doi: 10.5114/ceh.2020.95831
  14. European Association for the Study of the Liver. Recommendations on Treatment of Hepatitis C 2018. J. Hepatol., 2018, vol. 69, no. 2, pp. 461–511. doi: 10.1016/j.jhep.2018.03.026
  15. European Association for the Study of the Liver. Recommendations on Treatment of Hepatitis C 2016. J. Hepatol., 2017, vol. 66, no. 1, pp. 153–194. doi: 10.1016/j.jhep.2016.09.001
  16. Fan R., Que W., Liu Z., Zheng W., Guo X., Liu L., Xiao F. Single-cell mapping reveals dysregulation of immune cell populations and VISTA+ monocytes in myasthenia gravis. Clin. Immunol., 2022, vol. 245: 109184. doi: 10.1016/j.clim.2022.109184
  17. Gao Z., Wang L., Song Z., Ren M., Yang Y., Li J., Shen K., Li Y., Ding Y., Yang Y., Zhou Y., Wei C., Gu J. Intratumoral CD73: an immune checkpoint shaping an inhibitory tumor microenvironment and implicating poor prognosis in Chinese melanoma cohorts. Front. Immunol., 2022, vol. 13: 954039. doi: 10.3389/fimmu.2022.954039
  18. Geng J., Raghavan M. CD8αα homodimers function as a coreceptor for KIR3DL1. Proc. Natl Acad. Sci. USA, 2019, vol. 116, no. 36, pp. 17951–17956. doi: 10.1073/pnas.1905943116
  19. Hashemi E., Malarkannan S. Tissue-resident NK cells: development, maturation, and clinical relevance. Cancers (Basel), 2020, vol. 12, no. 6: 1553. doi: 10.3390/cancers12061553
  20. Hughes T., Briercheck E.L., Freud A.G., Trotta R., McClory S., Scoville S.D., Keller K., Deng Y., Cole J., Harrison N., Mao C., Zhang J., Benson D.M., Yu J., Caligiuri M.A. The transcription factor AHR prevents the differentiation of a stage 3 innate lymphoid cell subset to natural killer cells. Cell. Rep., 2014, vol. 8, no. 1, pp. 150–162. doi: 10.1016/j.celrep.2014.05.042
  21. Jiang H.J., Wang X.X., Luo B.F., Cong X., Jin Q., Qin H., Zhang H.Y., Kong X.S., Wei L., Feng B. Direct antiviral agents upregulate natural killer cell potential activity in chronic hepatitis C patients. Clin. Exp. Med., 2019, vol. 19, no. 3, pp. 299–308. doi: 10.1007/s10238-019-00564-9
  22. Kudryavtsev I., Rubinstein A., Golovkin A., Kalinina O., Vasilyev K., Rudenko L., Isakova-Sivak I. Dysregulated immune responses in SARS-CoV-2-infected patients: a comprehensive overview. Viruses, 2022, vol. 14, no. 5: 1082. doi: 10.3390/v14051082
  23. Lugli E., Marcenaro E., Mavilio D. NK cell subset redistribution during the course of viral infections. Front. Immunol., 2014, vol. 5: 390. doi: 10.3389/fimmu.2014.00390
  24. Matos J., Paparo F., Bacigalupo L., Cenderello G., Mussetto I., De Cesari M., Bernardi S.P., Cevasco L., Forni G.L., Cassola G., Rollandi G.A. Noninvasive liver fibrosis assessment in chronic viral hepatitis C: agreement among 1D transient elastography, 2D shear wave elastography, and magnetic resonance elastography. Abdom. Radiol. (NY), 2019, vol. 44, no. 12, pp. 4011–4021. doi: 10.1007/s00261-019-02295-7
  25. McKinney E.F., Cuthbertson I., Harris K.M., Smilek D.E., Connor C., Manferrari G., Carr E.J., Zamvil S.S., Smith K.G.C. A CD8+ NK cell transcriptomic signature associated with clinical outcome in relapsing remitting multiple sclerosis. Nat. Commun., 2021, vol. 12, no. 1: 635. doi: 10.1038/s41467-020-20594-2
  26. Michel T., Poli A., Cuapio A., Briquemont B., Iserentant G., Ollert M., Zimmer J. Human CD56bright NK cells: an update. J. Immunol., 2016, vol. 196, no. 7, pp. 2923–2931. doi: 10.4049/jimmunol.1502570
  27. Murad S., Michen S., Becker A., Füssel M., Schackert G., Tonn T., Momburg F., Temme A. NKG2C+ NK cells for immunotherapy of glioblastoma multiforme. Int. J. Mol. Sci., 2022, vol. 23, no. 10: 5857. doi: 10.3390/ijms23105857
  28. Neo S.Y., Yang Y., Record J., Ma R., Chen X., Chen Z., Tobin N.P., Blake E., Seitz C., Thomas R., Wagner A.K., Andersson J., de Boniface J., Bergh J., Murray S., Alici E., Childs R., Johansson M., Westerberg L.S., Haglund F., Hartman J., Lundqvist A. CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment. J. Clin. Invest., 2020, vol. 130, no. 3, pp. 1185–1198. doi: 10.1172/JCI128895
  29. Pallmer K., Oxenius A. Recognition and regulation of T cells by NK cells. Front. Immunol., 2016, vol. 7: 251. doi: 10.3389/fimmu.2016.00251
  30. Sarrazin C. The importance of resistance to direct antiviral drugs in HCV infection in clinical practice. J. Hepatol., 2016, vol. 64, no. 2, pp. 486–504. doi: 10.1016/j.jhep.2015.09.011
  31. Sutherland D.R., Ortiz F., Quest G., Illingworth A., Benko M., Nayyar R., Marinov I. High-sensitivity 5-, 6-, and 7-color PNH WBC assays for both Canto II and Navios platforms. Cytometry B Clin. Cytom., 2018, vol. 94, no. 4, pp. 637–651. doi: 10.1002/cyto.b.21626
  32. Tarbiah N.I., Alkhattabi N.A., Alsahafi A.J., Aljahdali H.S., Joharjy H.M., Al-Zahrani M.H., Sabban A.M., Alghamdi R.A., Balgoon M.J., Khalifa R.A. T cells immunophenotyping and CD38 overexpression as Hallmarks of the severity of COVID-19 and predictors of patients’ outcomes. J. Clin. Med., 2023, vol. 12, no. 2: 710. doi: 10.3390/jcm12020710
  33. Villalba M., Alexia C., Bellin-Robert A., Fayd’herbe de Maudave A., Gitenay D. Non-genetically improving the natural cytotoxicity of natural killer (NK) Cells. Front. Immunol., 2020, vol. 10: 3026. doi: 10.3389/fimmu.2019.03026
  34. Viola D., Dona A., Caserta E., Troadec E., Besi F., McDonald T., Ghoda L., Gunes E.G., Sanchez J.F., Khalife J., Martella M., Karanes C., Htut M., Wang X., Rosenzweig M., Chowdhury A., Sborov D., Miles R.R., Yazaki P.J., Ebner T., Hofmeister C.C., Forman S.J., Rosen S.T., Marcucci G., Shively J., Keats J.J., Krishnan A., Pichiorri F. Daratumumab induces mechanisms of immune activation through CD38+ NK cell targeting. Leukemia, 2021, vol. 35, no. 1, pp. 189–200. doi: 10.1038/s41375-020-0810-4
  35. Vujanovic L., Chuckran C., Lin Y., Ding F., Sander C.A., Santos P.M., Lohr J., Mashadi-Hossein A., Warren S., White A., Huang A., Kirkwood J.M., Butterfield L.H. CD56dim CD16– natural killer cell profiling in melanoma patients receiving a cancer vaccine and interferon-α. Front. Immunol., 2019, vol. 10: 14. doi: 10.3389/fimmu.2019.00014
  36. Wang S., Gao S., Zhou D., Qian X., Luan J., Lv X. The role of the CD39-CD73-adenosine pathway in liver disease. J. Cell. Physiol., 2021, vol. 236, no. 2, pp. 851–862. doi: 10.1002/jcp.29932
  37. Xie J., Xu B., Wei L., Huang C., Liu W. Effectiveness and safety of Sofosbuvir/Velpatasvir/Voxilaprevir as a hepatitis C virus infection salvage therapy in the real world: a systematic review and meta-analysis. Infect. Dis. Ther., 2022, vol. 11, no. 4, pp. 1661–1682. doi: 10.1007/s40121-022-00666-0
  38. Yu J., Mao H.C., Wei M., Hughes T., Zhang J., Park I.K., Liu S., McClory S., Marcucci G., Trotta R., Caligiuri M.A. CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. Blood, 2010, vol. 115, no. 2, pp. 274–281. doi: 10.1182/blood-2009-04-215491
  39. Zhang X., Jiang Y., Li S., Bian D., Liu M., Kong M., Chen Y., Duan Z., Zheng S. Direct-acting antiviral-induced transient recovery of NK cells in early-stage treatment of chronic hepatitis C patients. J. Clin. Transl. Hepatol., 2022, vol. 10, no. 6, pp. 1117–1124. doi: 10.14218/JCTH.2021.00427

补充文件

附件文件
动作
1. JATS XML

版权所有 © Savchenko A.A., Tikhonova E.P., Anisimova A.A., Kudryavtsev I.V., Belenjuk V.D., Borisov A.G., 2023

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».