Features of NK cell phenotype virus genotype-driven chronic viral hepatitis C
- 作者: Savchenko A.A.1, Tikhonova E.P.2, Anisimova A.A.3, Kudryavtsev I.V.4, Belenjuk V.D.1, Borisov A.G.1
-
隶属关系:
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Healthcare of the Russian Federation
- Krasnoyarsk Interdistrict Clinical Emergency Hospital named after N.S. Karpovich
- Institute of Experimental Medicine
- 期: 卷 13, 编号 4 (2023)
- 页面: 663-674
- 栏目: ORIGINAL ARTICLES
- URL: https://journal-vniispk.ru/2220-7619/article/view/158873
- DOI: https://doi.org/10.15789/2220-7619-HCV-8047
- ID: 158873
如何引用文章
全文:
详细
Elimination of the hepatitis C virus (HCV) due to direct antiviral drug (DAD) action affects alteration in virus phenotype and, accordingly, NK cell functional activity. However, the published data are very contradictory. The aim of the study was to investigae alterations in NK cell subset phenotype after DAD treatment of HCV genotype-dependent chronic viral hepatitis C (CVHC) patients. Materials and methods. 111 CVHC patients and 21 healthy volunteers were examined. The diagnosis was established on epidemiological, clinical and laboratory data. All 111 subjects with CVHC received direct antiviral drugs Sofosbuvir and Velpatasvir for 12 weeks. The study of the NK cell phenotypes wwas analyzed by multicolor flow cytometry. Results. A decreased count of cytokine-producing along with increased frequency of cytotoxic NK cells were found in CVHC patients blood samples with various HCV genotypes prior to DAD treatment. The imbalance of cytotoxic cells with a high level of functional activity was also found in CVHC patients regardless of HCV genotype. The patients with HCV genotypes 1 and 3 showed significantly increased level of immunoregulatory NK cells. In addition, increased count of glycohydrolase (CD38) and ecto-5'-nucleotidase (CD73)-expressing NK cells were found in patients with HCV genotypes 1 and 3. Hence, such alterations in NK cell phenotype in CVHC patients were presented as sustained high viral load which peaking at carriers of HCV genotype 1 that was minimal in patients with HCV genotype 2. The most prominent change in NK cells after DAD treatment was found in CVHC patients with HCV genotype 2 (normalization of CD8-expressing NK cell subset composition and count). Only patients with HCV genotype 2 after treatment had increased frequencies of peripheral blood double-negative CD38–CD73– NK cells. Patients with HCV genotypes 1 and 3 also showed minimally improved in NK cell subset composition after DAD treatment. Conclusion. Evaluation of specific changes in NK cell phenotype during DAD treatment of CVHC patients driven by HCV genotype undoubtedly is of importance and high relevance. The results obtained are novel and complement the insights into CVHC immunopathogenesis. Analysis of NK cell phenotypes and functional activity in patients with CVHC may promote development of new methods for treating HCV infection.
作者简介
Andrei Savchenko
Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North
Email: aasavchenko@yandex.ru
DSc (Medicine), Professor, Head of the Laboratory of Cellular-Molecular Physiology and Pathology
俄罗斯联邦, KrasnoyarskElena Tikhonova
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Healthcare of the Russian Federation
Email: aasavchenko@yandex.ru
DSc (Medicine), Professor, Head of the Department of Infectious Diseases and Epidemiology with a course of Postgraduate Education
俄罗斯联邦, KrasnoyarskAnna Anisimova
Krasnoyarsk Interdistrict Clinical Emergency Hospital named after N.S. Karpovich
Email: aasavchenko@yandex.ru
Physician of Infectious Disease Ward
俄罗斯联邦, KrasnoyarskIgor Kudryavtsev
Institute of Experimental Medicine
编辑信件的主要联系方式.
Email: igorek1981@yandex.ru
PhD (Biology), Head of the Cell Immunology Laboratory, Department of Immunology, Institute of Experimental Medicine, Assistant Professor, Department of Immunology
俄罗斯联邦, 197376, Saint Petersburg, Academician Pavlov str., 12; Saint PetersburgVasilij Belenjuk
Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North
Email: dyh.88@mail.ru
Junior Researcher, Laboratory of Cellular-Molecular Physiology and Pathology
俄罗斯联邦, KrasnoyarskAlexandr Borisov
Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North
Email: 2410454@mail.ru
PhD (Medicine), Leading Researcher, Laboratory of Cellular-Molecular Physiology and Pathology
俄罗斯联邦, Krasnoyarsk参考
- Борисов А.Г., Савченко А.А., Кудрявцев И.В. Особенности иммунного реагирования при вирусных инфекциях // Инфекция и иммунитет. 2015. Т. 5, № 2. С. 148–156. [Borisov G.A., Savchenko A.A., Kudryavtsev I.V. Features of the immune response during viral infection. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2015, vol. 5, no. 2, pp. 148–156. (In Russ.)] doi: 10.15789/2220-7619-2015-2-148-156
- Борисов А.Г., Савченко А.А., Тихонова Е.П. Современные методы лечения вирусного гепатита C. Красноярск: НИИ медицинских проблем Севера, 2017. 74 с. [Borisov A.G., Savchenko A.A., Tikhonova E.P. Modern methods of treating viral hepatitis C. Krasnoyarsk: Research Institute of Medical Problems of the North, 2017. 74 p. (In Russ.)]
- Кудрявцев И.В., Субботовская А.И. Опыт измерения параметров иммунного статуса с использованием шестицветного цитофлуориметрического анализа // Медицинская иммунология. 2015. Т. 17, № 1. С. 19–26. [Kudryavtsev I.V., Subbo-tovskaya A.I. Application of six-color flow cytometric analysis for immune profile monitoring. Meditsinskaya immunologiya = Medical Immunology (Russia), 2015, vol. 17, no. 1, pp. 19–26. (In Russ.)] doi: 10.15789/1563-0625-2015-1-19-26
- Орлова С.Н., Басханова М.В. Эффективность противовирусной терапии хронического гепатита С у пациентов с недифференцированной дисплазией соединительной ткани // Эпидемиология и инфекционные болезни. 2019. № 2. С. 61–67. [Orlova S.N., Baskhanova M.V. Efficiency of antiviral therapy for chronic hepatitis c in patients with undifferentiated connective tissue dysplasia. Epidemiologiya i infektsionnye bolezni = Epidemiology and Infectious Diseases, 2019, no. 2, pp. 64–67. (In Russ.)] doi: 10.18565/epidem.2019. 2.61-67
- Щаницына С.Е., Бурневич Э.З., Никулкина Е.Н., Филатова А.Л., Моисеев С.В., Мухин Н.А. Факторы риска неблагоприятного прогноза хронического гепатита С // Терапевтический архив. 2019. Т. 91, № 2. С. 59–66. [Shchanitcyna S.E., Burnevich E.Z., Nikulkina E.N., Filatova A.L., Moiseev S.V., Mukhin N.A. Risk factors of unfavorable prognosis of chronic C. Terapevticheskiy arkhiv = Therapeutic Archive, 2019, vol. 91, no. 2, pp. 59–66. (In Russ.)] doi: 10.26442/00403660.2019.02.000082
- Южанинова С.В., Сайдакова Е.В. Феномен иммунного истощения // Успехи современной биологии. 2017. Т. 137, № 1. С. 70–83. [Yuzhaninova S.V., Saidakova E.V. Immune exhaustion. Uspekhi sovremennoy biologii = Advances in Modern Biology, 2017, vol. 137, no. 1, pp. 70–83. (In Russ.)]
- Abel A.M., Yang C., Thakar M.S., Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front. Immunol., 2018, vol. 9, pp. 1869. doi: 10.3389/fimmu.2018.01869
- Anuforo O.U.U., Bjarnarson S.P., Jonasdottir H.S., Giera M., Hardardottir I., Freysdottir J. Natural killer cells play an essential role in resolution of antigen-induced inflammation in mice. Mol. Immunol., 2018, vol. 93, pp. 1–8. doi: 10.1016/ j.molimm.2017.10.019
- Badry A., Jaspers V.L.B., Waugh C.A. Environmental pollutants modulate RNA and DNA virus-activated miRNA-155 expression and innate immune system responses: Insights into new immunomodulative mechanisms. J. Immunotoxicol., 2020, vol. 17, no. 1, pp. 86–93. doi: 10.1080/1547691X. 2020.1740838
- Ben A.J., Neumann C.R., Mengue S.S. The brief medication questionnaire and Morisky-Green test to evaluate medication adherence. Rev. Saude Publica, 2012, vol. 46, no. 2, pp. 279–289. doi: 10.1590/s0034-89102012005000013
- Cichocki F., Grzywacz B., Miller J.S. Human NK cell development: one road or many? Front. Immunol., 2019, vol. 10: 2078. doi: 10.3389/fimmu. 2019.02078
- Deng X., Terunuma H. Harnessing NK cells to control metastasis. Vaccines (Basel), 2022, vol. 10, no. 12: 2018. doi: 10.3390/vaccines10122018
- Eldeeb M.K., Magour G.M., Bedair R.N., Shamseya M.M., Hammouda M.A. Study of Dickkopf-1 (DKK-1) in patients with chronic viral hepatitis C-related liver cirrhosis with and without hepatocellular carcinoma. Clin. Exp. Hepatol., 2020, vol. 6, no. 2, pp. 85–91. doi: 10.5114/ceh.2020.95831
- European Association for the Study of the Liver. Recommendations on Treatment of Hepatitis C 2018. J. Hepatol., 2018, vol. 69, no. 2, pp. 461–511. doi: 10.1016/j.jhep.2018.03.026
- European Association for the Study of the Liver. Recommendations on Treatment of Hepatitis C 2016. J. Hepatol., 2017, vol. 66, no. 1, pp. 153–194. doi: 10.1016/j.jhep.2016.09.001
- Fan R., Que W., Liu Z., Zheng W., Guo X., Liu L., Xiao F. Single-cell mapping reveals dysregulation of immune cell populations and VISTA+ monocytes in myasthenia gravis. Clin. Immunol., 2022, vol. 245: 109184. doi: 10.1016/j.clim.2022.109184
- Gao Z., Wang L., Song Z., Ren M., Yang Y., Li J., Shen K., Li Y., Ding Y., Yang Y., Zhou Y., Wei C., Gu J. Intratumoral CD73: an immune checkpoint shaping an inhibitory tumor microenvironment and implicating poor prognosis in Chinese melanoma cohorts. Front. Immunol., 2022, vol. 13: 954039. doi: 10.3389/fimmu.2022.954039
- Geng J., Raghavan M. CD8αα homodimers function as a coreceptor for KIR3DL1. Proc. Natl Acad. Sci. USA, 2019, vol. 116, no. 36, pp. 17951–17956. doi: 10.1073/pnas.1905943116
- Hashemi E., Malarkannan S. Tissue-resident NK cells: development, maturation, and clinical relevance. Cancers (Basel), 2020, vol. 12, no. 6: 1553. doi: 10.3390/cancers12061553
- Hughes T., Briercheck E.L., Freud A.G., Trotta R., McClory S., Scoville S.D., Keller K., Deng Y., Cole J., Harrison N., Mao C., Zhang J., Benson D.M., Yu J., Caligiuri M.A. The transcription factor AHR prevents the differentiation of a stage 3 innate lymphoid cell subset to natural killer cells. Cell. Rep., 2014, vol. 8, no. 1, pp. 150–162. doi: 10.1016/j.celrep.2014.05.042
- Jiang H.J., Wang X.X., Luo B.F., Cong X., Jin Q., Qin H., Zhang H.Y., Kong X.S., Wei L., Feng B. Direct antiviral agents upregulate natural killer cell potential activity in chronic hepatitis C patients. Clin. Exp. Med., 2019, vol. 19, no. 3, pp. 299–308. doi: 10.1007/s10238-019-00564-9
- Kudryavtsev I., Rubinstein A., Golovkin A., Kalinina O., Vasilyev K., Rudenko L., Isakova-Sivak I. Dysregulated immune responses in SARS-CoV-2-infected patients: a comprehensive overview. Viruses, 2022, vol. 14, no. 5: 1082. doi: 10.3390/v14051082
- Lugli E., Marcenaro E., Mavilio D. NK cell subset redistribution during the course of viral infections. Front. Immunol., 2014, vol. 5: 390. doi: 10.3389/fimmu.2014.00390
- Matos J., Paparo F., Bacigalupo L., Cenderello G., Mussetto I., De Cesari M., Bernardi S.P., Cevasco L., Forni G.L., Cassola G., Rollandi G.A. Noninvasive liver fibrosis assessment in chronic viral hepatitis C: agreement among 1D transient elastography, 2D shear wave elastography, and magnetic resonance elastography. Abdom. Radiol. (NY), 2019, vol. 44, no. 12, pp. 4011–4021. doi: 10.1007/s00261-019-02295-7
- McKinney E.F., Cuthbertson I., Harris K.M., Smilek D.E., Connor C., Manferrari G., Carr E.J., Zamvil S.S., Smith K.G.C. A CD8+ NK cell transcriptomic signature associated with clinical outcome in relapsing remitting multiple sclerosis. Nat. Commun., 2021, vol. 12, no. 1: 635. doi: 10.1038/s41467-020-20594-2
- Michel T., Poli A., Cuapio A., Briquemont B., Iserentant G., Ollert M., Zimmer J. Human CD56bright NK cells: an update. J. Immunol., 2016, vol. 196, no. 7, pp. 2923–2931. doi: 10.4049/jimmunol.1502570
- Murad S., Michen S., Becker A., Füssel M., Schackert G., Tonn T., Momburg F., Temme A. NKG2C+ NK cells for immunotherapy of glioblastoma multiforme. Int. J. Mol. Sci., 2022, vol. 23, no. 10: 5857. doi: 10.3390/ijms23105857
- Neo S.Y., Yang Y., Record J., Ma R., Chen X., Chen Z., Tobin N.P., Blake E., Seitz C., Thomas R., Wagner A.K., Andersson J., de Boniface J., Bergh J., Murray S., Alici E., Childs R., Johansson M., Westerberg L.S., Haglund F., Hartman J., Lundqvist A. CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment. J. Clin. Invest., 2020, vol. 130, no. 3, pp. 1185–1198. doi: 10.1172/JCI128895
- Pallmer K., Oxenius A. Recognition and regulation of T cells by NK cells. Front. Immunol., 2016, vol. 7: 251. doi: 10.3389/fimmu.2016.00251
- Sarrazin C. The importance of resistance to direct antiviral drugs in HCV infection in clinical practice. J. Hepatol., 2016, vol. 64, no. 2, pp. 486–504. doi: 10.1016/j.jhep.2015.09.011
- Sutherland D.R., Ortiz F., Quest G., Illingworth A., Benko M., Nayyar R., Marinov I. High-sensitivity 5-, 6-, and 7-color PNH WBC assays for both Canto II and Navios platforms. Cytometry B Clin. Cytom., 2018, vol. 94, no. 4, pp. 637–651. doi: 10.1002/cyto.b.21626
- Tarbiah N.I., Alkhattabi N.A., Alsahafi A.J., Aljahdali H.S., Joharjy H.M., Al-Zahrani M.H., Sabban A.M., Alghamdi R.A., Balgoon M.J., Khalifa R.A. T cells immunophenotyping and CD38 overexpression as Hallmarks of the severity of COVID-19 and predictors of patients’ outcomes. J. Clin. Med., 2023, vol. 12, no. 2: 710. doi: 10.3390/jcm12020710
- Villalba M., Alexia C., Bellin-Robert A., Fayd’herbe de Maudave A., Gitenay D. Non-genetically improving the natural cytotoxicity of natural killer (NK) Cells. Front. Immunol., 2020, vol. 10: 3026. doi: 10.3389/fimmu.2019.03026
- Viola D., Dona A., Caserta E., Troadec E., Besi F., McDonald T., Ghoda L., Gunes E.G., Sanchez J.F., Khalife J., Martella M., Karanes C., Htut M., Wang X., Rosenzweig M., Chowdhury A., Sborov D., Miles R.R., Yazaki P.J., Ebner T., Hofmeister C.C., Forman S.J., Rosen S.T., Marcucci G., Shively J., Keats J.J., Krishnan A., Pichiorri F. Daratumumab induces mechanisms of immune activation through CD38+ NK cell targeting. Leukemia, 2021, vol. 35, no. 1, pp. 189–200. doi: 10.1038/s41375-020-0810-4
- Vujanovic L., Chuckran C., Lin Y., Ding F., Sander C.A., Santos P.M., Lohr J., Mashadi-Hossein A., Warren S., White A., Huang A., Kirkwood J.M., Butterfield L.H. CD56dim CD16– natural killer cell profiling in melanoma patients receiving a cancer vaccine and interferon-α. Front. Immunol., 2019, vol. 10: 14. doi: 10.3389/fimmu.2019.00014
- Wang S., Gao S., Zhou D., Qian X., Luan J., Lv X. The role of the CD39-CD73-adenosine pathway in liver disease. J. Cell. Physiol., 2021, vol. 236, no. 2, pp. 851–862. doi: 10.1002/jcp.29932
- Xie J., Xu B., Wei L., Huang C., Liu W. Effectiveness and safety of Sofosbuvir/Velpatasvir/Voxilaprevir as a hepatitis C virus infection salvage therapy in the real world: a systematic review and meta-analysis. Infect. Dis. Ther., 2022, vol. 11, no. 4, pp. 1661–1682. doi: 10.1007/s40121-022-00666-0
- Yu J., Mao H.C., Wei M., Hughes T., Zhang J., Park I.K., Liu S., McClory S., Marcucci G., Trotta R., Caligiuri M.A. CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. Blood, 2010, vol. 115, no. 2, pp. 274–281. doi: 10.1182/blood-2009-04-215491
- Zhang X., Jiang Y., Li S., Bian D., Liu M., Kong M., Chen Y., Duan Z., Zheng S. Direct-acting antiviral-induced transient recovery of NK cells in early-stage treatment of chronic hepatitis C patients. J. Clin. Transl. Hepatol., 2022, vol. 10, no. 6, pp. 1117–1124. doi: 10.14218/JCTH.2021.00427
补充文件
