2020–2021 rhinovirus genetic diversity in Saint Petersburg
- 作者: Ksenafontov A.D.1, Pisareva M.M.1, Eder V.A.1, Musaeva T.D.1, Fadeev A.V.1, Komissarov A.B.1, Kiseleva I.V.1,2, Lioznov D.A.1,3
-
隶属关系:
- Smorodintsev Research Institute of Influenza
- Institute of Experimental Medicine
- Pavlov First Saint Petersburg State Medical University (Pavlov University)
- 期: 卷 13, 编号 4 (2023)
- 页面: 743-753
- 栏目: ORIGINAL ARTICLES
- URL: https://journal-vniispk.ru/2220-7619/article/view/158879
- DOI: https://doi.org/10.15789/2220-7619-RGD-15620
- ID: 158879
如何引用文章
全文:
详细
Introduction. Rhinoviruses represent one of the most common respiratory viruses and belong to the Picornoviridae family, genus Enterovirus, being divided into three types: A, B, C, which account for 169 types. Rhinoviruses predominate in autumn and spring periods, although they circulate throughout almost entire epidemic season. The rhinovirus genome is represented by a single-stranded 7.2 thousand base-long +RNA. According to the publications, the most common rhinovirus species is rhinovirus A (HRV-A), followed by rhinoviruses C (HRV-C) and finally rhinovirus B (HRV-B). The aim of our study was to define rhinovirus genetic diversity in Saint Petersburg . Materials and methods. The study was conducted at the Laboratory of Molecular Virology, Smorodintsev Research Institute of Influenza. Samples (smears from the nasopharynx and oropharynx) were delivered from the S.P. Botkin Clinical Infectious Diseases Hospital, St. Olga’s Children's City Hospital, N.F. Filatov Children's City Clinical Hospital No. 5. Outpatient samples were used as well. Samples received from December 2020 to October 2021 were analyzed. Detection of rhinoviruses was carried out by real-time PCR, typing — by Sanger sequencing, with primers developed by da Costa Souza L. et al. (2021). Results. According to total specimen testing, rhinoviruses comprise 3.2% total number of specimens tested. Of these, 71 rhinoviruses were typed, representing 17.03% total number of rhinovirus-positive specimens. The most common was HRV-A (55%), among which 21 types were found (the most common HRV-A46 is 13%, n = 5). HRV-B and HRV-C were found in equal numbers — 23% (n = 16) of each species out of total number of typed rhinoviruses. Among HRV-B, 8 types were found; the most common HRV-B06 comprised 33% (n = 5). Among HRV-C, 7 types were found (the most common types are HRV-C42, HRV-C32 and HRV-C15 — 19% each, n = 3). HRV-A was detected mainly in patients aged 18 to 65 years (57.5%, n = 23). HRV-B was detected only in adult patients (100%, n = 16). HRV-C was detected in children under 2 years of age (43.75%, n = 7) and adults aged 18–65 years (31.25%, n = 5). In some cases, HRV-A and HRV-C were associated with various respiratory tract syndromes such as acute nasopharyngitis, laryngotracheitis, obstructive bronchitis, and pneumonia. HRV-B was related to clinical manifestations of pneumonia in seven cases. Conclusion. Rhinovirus type A prevails in Saint Petersburg . Rhinoviruses can be associated with diverse respiratory tract syndromes.
作者简介
Andrey Ksenafontov
Smorodintsev Research Institute of Influenza
编辑信件的主要联系方式.
Email: ksenandrey@yandex.ru
ORCID iD: 0000-0002-4532-6210
PhD Student, Research Laboratory Assistant, Laboratory of Molecular Virology, Department of Etiology and Epidemiology
俄罗斯联邦, 197376, Saint Petersburg , Prof. Popova str., 15/17Maria Pisareva
Smorodintsev Research Institute of Influenza
Email: maria.pisareva@influenza.spb.ru
ORCID iD: 0000-0002-1499-9957
SPIN 代码: 9662-5361
Scopus 作者 ID: 6506831021
Researcher ID: J-2696-2016
PhD (Medicine), Leading Researcher, Laboratory of Molecular Virology, Department of Etiology and Epidemiology
俄罗斯联邦, 197376, Saint Petersburg , Prof. Popova str., 15/17Veronika Eder
Smorodintsev Research Institute of Influenza
Email: veronika.eder@influenza.spb.ru
ORCID iD: 0000-0002-9970-3325
SPIN 代码: 4793-1377
Scopus 作者 ID: 56387095900
Researcher ID: G-6907-2017
DSc (Biology), Senior Researcher, Laboratory of Molecular Virology, Department of Etiology and Epidemiology
俄罗斯联邦, 197376, Saint Petersburg , Prof. Popova str., 15/17Tamila Musaeva
Smorodintsev Research Institute of Influenza
Email: tamilamusaeva94@mail.ru
ORCID iD: 0000-0002-3050-1936
SPIN 代码: 3767-2899
Scopus 作者 ID: 57189459858
Researcher ID: J-1174-2016
Junior Researcher, Laboratory of Molecular Virology, Department of Etiology and Epidemiology
俄罗斯联邦, 197376, Saint Petersburg , Prof. Popova str., 15/17Artem Fadeev
Smorodintsev Research Institute of Influenza
Email: afadeew@gmail.com
ORCID iD: 0000-0003-3558-3261
SPIN 代码: 3057-5288
Scopus 作者 ID: 57189463994
Researcher ID: I-9397-2016
Senior Researcher, Laboratory of Molecular Virology, Department of Etiology and Epidemiology
俄罗斯联邦, 197376, Saint Petersburg , Prof. Popova str., 15/17Andrey Komissarov
Smorodintsev Research Institute of Influenza
Email: a.b.komissarov@gmail.com
ORCID iD: 0000-0003-1733-1255
SPIN 代码: 3792-8290
Scopus 作者 ID: 44861547900
Researcher ID: K-4598-2013
Head of the Laboratory of Molecular Virology, Department of Etiology and Epidemiology
俄罗斯联邦, 197376, Saint Petersburg , Prof. Popova str., 15/17Irina Kiseleva
Smorodintsev Research Institute of Influenza; Institute of Experimental Medicine
Email: irina.v.kiseleva@mail.ru
ORCID iD: 0000-0002-3892-9873
SPIN 代码: 7857-7306
Scopus 作者 ID: 7102041346
DSc (Biology), Professor, Head of the Laboratory of General Virology, Senior Lecturer, Department of Education
俄罗斯联邦, 197376, Saint Petersburg , Prof. Popova str., 15/17; Saint PetersburgDmitry Lioznov
Smorodintsev Research Institute of Influenza; Pavlov First Saint Petersburg State Medical University (Pavlov University)
Email: dlioznov@yandex.ru
ORCID iD: 0000-0003-3643-7354
Scopus 作者 ID: 8634494900
Researcher ID: J-2539-2013
DSc (Medicine), Professor, Director, Head of the Department of Infectious Diseases and Epidemiology
俄罗斯联邦, 197376, Saint Petersburg , Prof. Popova str., 15/17; 197022, Saint Petersburg, Lev Tolstoy street, 6-8参考
- Adam D.C., Chen X., Scotch M., MacIntyre C.R., Dwyer D., Kok J. The molecular epidemiology and clinical phylogenetics of rhinoviruses among paediatric cases in Sydney, Australia. Int. J. Infect. Dis., 2021, vol. 110, pp. 69–74. doi: 10.1016/j.ijid.2021.06.046
- Alsayed A.R., Abed A., Abu-Samak M., Alshammari F., Alshammari B. Etiologies of acute bronchiolitis in children at risk for asthma, with emphasis on the human rhinovirus genotyping protocol. J. Clin. Med., 2023, vol. 12, no. 12: 3909. doi: 10.3390/jcm12123909
- Baillie V.L., Moore D.P., Mathunjwa A., Morailane P., Simões E.A.F., Madhi S.A. Molecular subtyping of human rhinovirus in children from three Sub-Saharan african countries. J. Clin. Microbiol., 2019, vol. 57, no. 9: e00723-19. doi: 10.1128/jcm.00723-19
- Bochkov Y.A., Watters K., Ashraf S., Griggs T.F., Devries M.K., Jackson D.J., Palmenberg A.C., Gern J.E. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc. Natl Acad. Sci. USA, 2015, vol. 112, no. 17, pp. 5485–5490. doi: 10.1073/pnas.1421178112
- Calderaro A., De Conto F., Buttrini M., Piccolo G., Montecchini S., Maccari C., Martinelli M., Di Maio A., Ferraglia F., Pinardi F., Montagna P., Arcangeletti M.C., Chezzi C. Human respiratory viruses, including SARS-CoV-2, circulating in the winter season 2019-2020 in Parma, Northern Italy. Int. J. Infect. Dis., 2021, vol. 102, pp. 79–84. doi: 10.1016/ j.ijid.2020.09.1473
- Cho G.S., Moon B.J., Lee B.J., Gong C.H., Kim N.H., Kim Y.S., Kim H.S., Jang Y.J. High rates of detection of respiratory viruses in the nasal washes and mucosae of patients with chronic rhinosinusitis. J. Clin. Microbiol., 2013, vol. 51, no. 3, pp. 979–984. doi: 10.1128/jcm.02806-12
- Chonmaitree T., Alvarez-Fernandez P., Jennings K., Trujillo R., Marom T., Loeffelholz M.J., Miller A.L., McCormick D.P., Patel J.A., Pyles R.B. Symptomatic and asymptomatic respiratory viral infections in the first year of life: association with acute otitis media development. Clin. Infect. Dis., 2015, vol. 60, no. 1, pp. 1–9. doi: 10.1093/cid/ciu714
- Current International Committee on Taxonomy of Viruses Taxonomy 2022 Release. URL: https://ictv.global/taxonomy (20.06.23)
- Da Costa Souza L., Bello E.J.M., Dos Santos E.M., Nagata T. Molecular and clinical characteristics related to rhinovirus infection in Brasília, Brazil. Braz. J. Microbiol., 2021, vol. 52, no. 1, pp. 289–298. doi: 10.1007/s42770-020-00411-0
- Easom N., Moss P., Barlow G., Samson A., Taynton T., Adams K., Ivan M., Burns P., Gajee K., Eastick K., Lillie P.J. Sixty-eight consecutive patients assessed for COVID-19 infection: experience from a UK regional infectious diseases unit. Influenza Other Respir Viruses, 2020, vol. 14, no. 4, pp. 374–379. doi: 10.1111/irv.12739
- Emanuels A., Heimonen J., O’Hanlon J., Kim A.E., Wilcox N., McCulloch D.J., Brandstetter E., Wolf C.R., Logue J.K., Han P.D., Pfau B., Newman K.L., Hughes J.P., Jackson M.L., Uyeki T.M., Boeckh M., Starita L.M., Nickerson D.A., Bedford T., Englund J.A., Chu H.Y. Remote household observation for noninfluenza respiratory viral illness. Clin. Infect. Dis., 2021, vol. 73, no. 11, pp. 4411–4418. doi: 10.1093/cid/ciaa1719
- Esneau C., Duff A.C., Bartlett N.W. Understanding rhinovirus circulation and impact on illness. Viruses, 2022, vol. 14, no. 1: 141. doi: 10.3390/v14010141
- Esposito S., Daleno C., Baggi E., Ciarmoli E., Lavizzari A., Pierro M., Semino M., Groppo M., Scala A., Terranova L., Galeone C., Principi N. Circulation of different rhinovirus groups among children with lower respiratory tract infection in Kiremba, Burundi. Eur. J. Clin. Microbiol. Infect Dis., 2012, vol. 31, no. 11, pp. 3251–3256. doi: 10.1007/s10096-012-1692-9
- Fawkner-Corbett D.W., Khoo S.K., Duarte C.M., Bezerra P.G., Bochkov Y.A., Gern J.E., Le Souef P.N., McNamara P.S. Rhinovirus-C detection in children presenting with acute respiratory infection to hospital in Brazil. J. Med. Virol., 2016, vol. 88, no. 1, pp. 58–63. doi: 10.1002/jmv.24300
- Greve J.M., Davis G., Meyer A.M., Forte C.P., Yost S.C., Marlor C.W., Kamarck M.E., McClelland A. The major human rhinovirus receptor is ICAM-1. Cell, 1989, vol. 56, no. 5, pp. 839–847. doi: 10.1016/0092-8674(89)90688-0
- Iwane M.K., Prill M.M., Lu X., Miller E.K., Edwards K.M., Hall C.B., Griffin M.R., Staat M.A., Anderson L.J., Williams J.V., Weinberg G.A., Ali A., Szilagyi P.G., Zhu Y., Erdman D.D. Human rhinovirus species associated with hospitalizations for acute respiratory illness in young US children. J. Infect. Dis., 2011, vol. 204, no. 11, pp. 1702–1710. doi: 10.1093/infdis/jir634
- Jacobs S.E., Lamson D.M., St George K., Walsh T.J. Human rhinoviruses. Clin. Microbiol. Rev., 2013, vol. 26, no. 1, pp. 135–162. doi: 10.1128/cmr.00077-12
- Jain S., Self W.H., Wunderink R.G., Fakhran S., Balk R., Bramley A.M., Reed C., Grijalva C.G., Anderson E.J., Courtney D.M., Chappell J.D., Qi C., Hart E.M., Carroll F., Trabue C., Donnelly H.K., Williams D.J., Zhu Y., Arnold S.R., Ampofo K., Waterer G.W., Levine M., Lindstrom S., Winchell J.M., Katz J.M., Erdman D., Schneider E., Hicks L.A., McCullers J.A., Pavia A.T., Edwards K.M., Finelli L.; CDC EPIC Study Team. Community-acquired pneumonia requiring hospitalization among U.S. adults. N. Engl. J. Med., 2015, vol. 373, no. 5, pp. 415–427. doi: 10.1056/NEJMoa1500245
- Jain S., Williams D.J., Arnold S.R., Ampofo K., Bramley A.M., Reed C., Stockmann C., Anderson E.J., Grijalva C.G., Self W.H., Zhu Y., Patel A., Hymas W., Chappell J.D., Kaufman R.A., Kan J.H., Dansie D., Lenny N, Hillyard D.R., Haynes L.M, Levine M., Lindstrom S., Winchell J.M., Katz J.M., Erdman D., Schneider E., Hicks L.A., Wunderink R.G., Edwards K.M., Pavia A.T., McCullers J.A., Finelli L.; CDC EPIC Study Team. Community-acquired pneumonia requiring hospitalization among U.S. children. N. Engl. J. Med., 2015, vol. 372, no. 9, pp. 835–845. doi: 10.1056/NEJMoa1405870
- Jensen L.M., Walker E.J., Jans D.A., Ghildyal R. Proteases of human rhinovirus: role in infection. Methods Mol. Biol., 2015, vol. 1221, pp. 129–141. doi: 10.1007/978-1-4939-1571-2_10
- Jiang H., Yang T., Yang C., Lu Y., Yi Z., Zhang Q., Wang W. Molecular epidemiology and clinical characterization of human rhinoviruses circulating in Shanghai, 2012–2020. Arch. Virol., 2022, vol. 167, no. 4, pp. 1111–1123. doi: 10.1007/s00705-022-05405-x
- Katoh K., Rozewicki J., Yamada D.K. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, vol. 20, no. 4, pp. 1160–1166. doi: 10.1093/bib/bbx108
- Kim D., Quinn J., Pinsky B., Shah N.H., Brown I. Rates of co-infection between SARS-CoV-2 and other respiratory pathogens. JAMA, 2020, vol. 323, no. 20, pp. 2085–2086. doi: 10.1001/jama.2020.6266
- Lu Q.B., Wo Y., Wang L.Y., Wang H.Y., Huang D.D., Zhang X.A., Liu W., Cao W.C. Molecular epidemiology of human rhinovirus in children with acute respiratory diseases in Chongqing, China. Sci. Rep., 2014, vol. 4: 6686. doi: 10.1038/srep06686
- Mancino E., Cristiani L., Pierangeli A., Scagnolari C., Nenna R., Petrarca L., Di Mattia G., La Regina D., Frassanito A., Oliveto G., Viscido A., Midulla F. A single centre study of viral community-acquired pneumonia in children: no evidence of SARS-CoV-2 from October 2019 to March 2020. J. Clin. Virol., 2020, vol. 128: 104385. doi: 10.1016/j.jcv.2020.104385
- Marriott D., Beresford R., Mirdad F., Stark D., Glanville A., Chapman S., Harkness J., Dore G.J, Andresen D., Matthews G.V., Concomitant marked decline in prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses among symptomatic patients following Public Health interventions in Australia: Data from St Vincent’s hospital and associated screening clinics, Sydney, NSW. Clin. Infect. Dis., 2021, vol. 72, no. 10, pp. 649–651. doi: 10.1093/cid/ciaa1256
- Matos A.D.R., Motta F.C., Caetano B.C., Ogrzewalska M., Garcia C.C., Lopes J.C.O., Miranda M., Livorati M.T.F.P., Abreu A., Brown D., Siqueira M.M. Identification of SARS-CoV-2 and additional respiratory pathogens cases under the investigation of COVID-19 initial phase in a Brazilian reference laboratory. Mem. Inst. Oswaldo Cruz, 2020, vol. 115: 200232. doi: 10.1590/0074-02760200232
- Melé M., Henares D., Pino R., Asenjo S., Matamoros R., Fumadó V., Fortuny C., García-García J.J., Jordan I., Brotons P., Muñoz-Almagro C., de-Sevilla M.F., Launes C. Kids-Corona Paediatric Hospitalist group. Low impact of SARS-CoV-2 infection among paediatric acute respiratory disease hospitalizations. J. Infect., 2021, vol. 82, no. 3, pp. 414–451. doi: 10.1016/ j.jinf.2020.10.013
- Miller E.K, Linder J., Kraft D., Johnson M., Lu P., Saville B.R., Williams J.V., Griffin M.R., Talbot H.K. Hospitalizations and outpatient visits for rhinovirus-associated acute respiratory illness in adults. J. Allergy Clin. Immunol., 2016, vol. 137, no. 3, pp. 734–743.e1. doi: 10.1016/j.jaci.2015.06.017
- Miller E.K., Edwards K.M., Weinberg G.A., Iwane M.K., Griffin M.R., Hall C.B., Zhu Y., Szilagyi P.G., Morin L.L., Heil L.H., Lu X., Williams J.V.; New Vaccine Surveillance Network. A novel group of rhinoviruses is associated with asthma hospitalizations. J. Allergy Clin. Immunol., 2009, vol. 123, no. 1, pp. 98–104.e1. doi: 10.1016/j.jaci.2008.10.007
- Miller E.K., Gebretsadik T., Carroll K.N., Dupont W.D., Mohamed Y.A., Morin L.L., Heil L., Minton P.A., Woodward K., Liu Z., Hartert T.V., Williams J.V. Viral etiologies of infant bronchiolitis, croup and upper respiratory illness during 4 consecutive years. Pediatr. Infect. Dis. J., 2013, vol. 32, no. 9, pp. 950–955. doi: 10.1097/INF.0b013e31829b7e43
- Nowak M.D., Sordillo E.M., Gitman M.R., Paniz Mondolfi A.E. Coinfection in SARS-CoV-2 infected patients: where are influenza virus and rhinovirus/enterovirus? J. Med. Virol., 2020, vol. 92, no. 10, pp. 699–1700. doi: 10.1002/jmv.25953
- Panning M., Wiener J., Rothe K., Schneider J., Pletz M.W., Rohde G., Rupp J., Witzenrath M., Spinner C.D. Members of the CAPNETZ study group. No SARS-CoV-2 detection in the German CAPNETZ cohort of community acquired pneumonia before COVID-19 peak in March 2020. Infection, 2020, vol. 48, no. 6, pp. 971–974.
- Panning M., Wiener J., Rothe K., Schneider J., Pletz M.W., Rohde G., Rupp J., Witzenrath M., Spinner C.D.; Members of the CAPNETZ study group. No SARS-CoV-2 detection in the German CAPNETZ cohort of community acquired pneumonia before COVID-19 peak in March 2020. Infection, 2020, vol. 48, no. 6, pp. 971–974. doi: 10.1007/s15010-020-01471-y
- Rhinoviruses. Methods and Protocols, Methods in Molecular Biology. Eds: Jans D.A., Ghildyal R. Springer, Hatfield, Hertfordshire, UK, 2015, vol. 1221. 190 p.
- Simmonds P., Gorbalenya A.E., Harvala H., Hovi T., Knowles N.J., Lindberg A.M., Oberste M.S., Palmenberg A.C., Reuter G., Skern T., Tapparel C., Wolthers K.C., Woo P.C.Y., Zell R. Recommendations for the nomenclature of enteroviruses and rhinoviruses. Arch. Virol., 2020, vol. 165, no. 3, pp. 793–797. doi: 10.1007/s00705-019-04520-6
- Sominina A., Danilenko D., Komissarov A., Pisareva M., Musaeva T., Bakaev M., Afanasieva O., Stolyarov K., Smorodintseva E., Rozhkova E., Obraztsova E., Dondurey E., Guzhov D., Timonina V., Golovacheva E., Kurskaya O., Shestopalov A., Smirnova S., Alimov A., Lioznov D. Age-specific etiology of severe acute respiratory infections and influenza vaccine effectivity in prevention of hospitalization in Russia, 2018–2019 season. J. Epidemiol. Glob. Health, 2021, vol. 11, no. 4, pp. 413–425. doi: 10.1007/s44197-021-00009-1
- Sominina A.A., Danilenko D.M., Stolyarov K.A., Karpova L.S., Bakaev M.I., Levanyuk T.P., Burtseva E.I., Lioznov D.A. Interference of SARS-CoV-2 with other respiratory viral infections agents during pandemic. Epidemiology and Vaccinal Prevention, 2021, vol. 20, no. 4, pp. 28–39. doi: 10.31631/2073-3046-2021-20-4-28-39
- Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 2014, vol. 30, no. 9, pp. 1312–1313. doi: 10.1093/bioinformatics/btu033
- Thongpan I., Vichaiwattana P., Vongpunsawad S., Poovorawan Y. Upsurge of human rhinovirus infection followed by a delayed seasonal respiratory syncytial virus infection in Thai children during the coronavirus pandemic. Influenza Other Respir. Viruses, 2021, vol. 15, no. 6, pp. 711–720. doi: 10.1111/irv.12893
- Wehrhahn M.C., Robson J., Brown S., Bursle E., Byrne S., New D., Chong S., Newcombe J.P., Siversten T., Hadlow N. Self-collection: an appropriate alternative during the SARS-CoV-2 pandemic. J. Clin. Virol., 2020, vol. 128: 104417. doi: 10.1016/ j.jcv.2020.104417
- Zlateva K.T., van Rijn A.L., Simmonds P., Coenjaerts F.E.J., van Loon A.M., Verheij T.J.M., de Vries J.J.C., Little P., Butler C.C., van Zwet E.W., Goossens H., Ieven M., Claas E.C.J.; GRACE Study Group. Molecular epidemiology and clinical impact of rhinovirus infections in adults during three epidemic seasons in 11 European countries (2007–2010). Thorax, 2020, vol. 75, no. 10, pp. 882–890.
补充文件
