Pediatric bacteremia and CNS infections associated with klebsiella pneumoniae: molecular genetic characteristics and clinical features
- Authors: Sadeeva Z.Z.1, Novikova I.E.1, Lazareva A.V.1, Alyabyeva N.M.1, Karaseva O.V.1,2, Yanushkina O.G.2, Verschinina M.G.1, Fisenko A.P.1
-
Affiliations:
- National Medical Research Center for Children’s Health of the Ministry of Health of the Russian Federation
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Department of Public Health of Moscow
- Issue: Vol 13, No 6 (2023)
- Pages: 1117-1128
- Section: ORIGINAL ARTICLES
- URL: https://journal-vniispk.ru/2220-7619/article/view/252311
- DOI: https://doi.org/10.15789/2220-7619-PBA-14482
- ID: 252311
Cite item
Full Text
Abstract
Klebsiella pneumoniae is one of the most significant and life-threatening pathogen of nosocomial infections. This opportunistic microorganism can cause infections of the bloodstream, respiratory tract, urinary tract, skin and soft tissues, inflammation of meninges of the brain and spinal cord, leading to elevated hospital mortality. The purpose of our study was a retrospective analysis of molecular genetic characteristics of K. pneumoniae isolated from blood and liquor samples as well as to describe clinical features in bacteremia and CNS infections. According to the results of assessed clinical data, K. pneumoniae isolates were selected from 64 children suffered from surgical pathology (congenital heart defects — 30%, abdominal pathology — 39%, severe combined trauma — 12%) and somatic diseases accompanied by antibacterial and/or glucocorticosteroid therapy — 14%. The minimum suppressive concentrations of antibiotics were determined by the broth micro-dilution method. Carbapenemases were detected by real time polymerase chain reaction. Virulence genes and capsule serotypes K1/K2 were assessed by multiplex PCR. Biofilms were grown using flat-bottomed polystyrene plates, followed by coloring, fixation, elution and data detection. The population diversity was assessed by multilocus sequence typing. Bacteremia and CNS infections associated with K. pneumoniae were fatal in 25% of cases. A substantial portion of the isolates demonstrated the phenotype of extremely drug resistance (XDR) — 43%, the phenotype of multidrug resistance (MDR) was shown in 16% of the isolates. The blaCTX-M cephalosporinase gene was found in 85% of the strains. The main determinant of resistance to carbapenems was the blaOXA-48 gene (33%); the blaNDM gene was detected in 9% of strains. The combination of blaOXA-48 and blaNDM was found in 7% of isolates. The study of biofilm production showed that moderate ability to form biofilms was shown in 61%, strong — 21%, and weak — 15% isolates. Two isolates (3%) did not form biofilms. The virulence genes entB and mrkD were detected in 100% of isolates, ybtS — in 78%. The iutA gene was found in 18% of the strains. Two isolates showed the presence of the kfu gene. Seven isolates belonged to the K2 serotype. 27 different genotypes were found in K. pneumoniae isolates examined. The most common were: ST307 — 21%, ST395 — 12%, ST48 — 7%, ST39 — 6% and ST29 — 6%. Infections of the bloodstream and central nervous system associated with K. pneumoniae have great importance in clinical practice. This microorganism is able to long persist on biotic and abiotic surfaces, has a wide natural and acquired resistance to antibiotics.
Full Text
##article.viewOnOriginalSite##About the authors
Zulfirya Z. Sadeeva
National Medical Research Center for Children’s Health of the Ministry of Health of the Russian Federation
Author for correspondence.
Email: zulfiryasadeeva@yandex.ru
ORCID iD: 0000-0002-4587-0902
Junior Researcher, Laboratory of Molecular Microbiology
Russian Federation, MoscowIrina E. Novikova
National Medical Research Center for Children’s Health of the Ministry of Health of the Russian Federation
Email: novikovayudina@outlook.com
ORCID iD: 0000-0003-4234-0209
Junior Researcher, Laboratory of Molecular Microbiolog
Russian Federation, MoscowAnna V. Lazareva
National Medical Research Center for Children’s Health of the Ministry of Health of the Russian Federation
Email: annalaz71@mail.ru
ORCID iD: 0000-0003-3896-2590
DSc (Medicine), Head Researcher, Laboratory of Molecular Microbiology, Head of the Microbiology Laboratory
Russian Federation, MoscowNatalya M. Alyabyeva
National Medical Research Center for Children’s Health of the Ministry of Health of the Russian Federation
Email: bambolinka@hotmail.com
ORCID iD: 0000-0001-9365-9143
PhD (Medicine), Senior Researcher, Head of the Laboratory of Experimental Immunology and Virology
Russian Federation, MoscowOlga V. Karaseva
National Medical Research Center for Children’s Health of the Ministry of Health of the Russian Federation; Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Department of Public Health of Moscow
Email: karaseva.o@list.ru
ORCID iD: 0000-0001-9418-4418
DSc (Medicine), Head of the Department of Emergency Surgery and Pediatric Trauma; Deputy Director for Scientific Work, Head of the Department of Combined Trauma, Anesthesiology-Resuscitation
Russian Federation, Moscow; MoscowOlga G. Yanushkina
Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Department of Public Health of Moscow
Email: spartak-lfc@mail.ru
ORCID iD: 0000-0002-6227-466X
Researcher, Department of Combined Trauma
Russian Federation, MoscowMarina G. Verschinina
National Medical Research Center for Children’s Health of the Ministry of Health of the Russian Federation
Email: labckb@gmail.com
ORCID iD: 0000-0001-6051-5231
PhD (Medicine), Leading Researcher, Laboratory of Medical Genomics
Russian Federation, MoscowAndrey P. Fisenko
National Medical Research Center for Children’s Health of the Ministry of Health of the Russian Federation
Email: fisenko@nczd.ru
ORCID iD: 0000-0001-8586-7946
DSc (Medicine), Professor, Director
Russian Federation, MoscowReferences
- Новикова И.Е., Садеева З.З., Шакирзянова Р.А., Алябьева Н.М., Лазарева А.В., Карасева О.В., Вершинина М.Г., Фисенко А.П. Использование полимеразной цепной реакции для детекции генов резистентности у грамотрицательных бактерий в рутинной практике педиатрического стационара // Клиническая лабораторная диагностика. 2022. T. 67, № 3. С. 180–185. [Novikova I.E., Sadeeva Z.Z., Shakirzyanova R.A., Alyabieva N.M., Lazareva A.V., Karaseva O.V., Vershinina M.G., Fisenko A.P. The using of the polymerase chain reaction for the detection of resistance genes in gram-negative bacteria in routine practice in a pediatric hospital. Klinicheskaya laboratornaya diagnostika = Russian Clinical Laboratory Diagnostics, 2022, vol. 67, no. 3, pp. 180–185. (In Russ.)] doi: 10.51620/0869-2084-2022-67-3-180-185
- Ahmed H.A., Ibrahim E.H.S., Abdelhaliem E., Elariny E.Y.T. Biotyping, virulotyping and biofilm formation ability of ESBL-Klebsiella pneumoniae isolates from nosocomial infections. J. Appl. Microbiol., 2022, vol. 132, no. 6, pp. 4555–4568. doi: 10.1111/jam.15563
- Bachman M.A., Oyler J.E., Burns S.H., Caza M., Lépine F., Dozois C.M., Weiser J.N. Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. Infect. Immun., 2011, vol. 79, no. 8, pp. 3309–3316. doi: 10.1128/IAI.05114-11
- Compain F., Babosan A., Brisse S., Genel N., Audo J., Ailloud F., Kassis-Chikhani N., Arlet G., Decré D. Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J. Clin. Microbiol., 2014, vol. 52, no. 12, pp. 4377–4380. doi: 10.1128/JCM.02316-14
- Diancourt L., Passet V., Verhoef J., Grimont P.A., Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol., 2005, vol. 43, no. 8, pp. 4178–4182. doi: 10.1128/JCM.43.8.4178-4182.2005
- Fursova N.K., Astashkin E.I., Gabrielyan N.I., Novikova T.S., Fedyukina G.N., Kubanova M.K., Esenova N.M., Sharapchenko S.O., Volozhantsev N.V. Emergence of five genetic lines ST395NDM-1, ST13OXA-48, ST3346OXA-48, ST39CTX-M-14, and novel ST3551OXA-48 of multidrug-resistant clinical Klebsiella pneumoniae in Russia. Microb. Drug. Resist., 2020, vol. 26, no. 8, pp. 924–933. doi: 10.1089/mdr.2019.0289
- German G.J., Gilmour M., Tipples G., Adam H.J., Almohri H., Bullard J., Dingle T., Farrell D., Girouard G., Haldane D., Hoang L., Levett P.N., Melano R., Minion J., Needle R., Patel S.N., Rennie R., Reyes R.C., Longtin J., Mulvey M.R. Canadian recommendations for laboratory interpretation of multiple or extensive drug resistance in clinical isolates of Enterobacteriaceae, Acinetobacter species and Pseudomonas aeruginosa. Can. Commun. Dis. Rep., 2018, vol. 44, no. 1, pp. 29–34. doi: 10.14745/ccdr.v44i01a07
- Girometti N., Lewis R.E., Giannella M., Ambretti S., Bartoletti M., Tedeschi S., Tumietto F., Cristini F., Trapani F., Gaibani P., Viale P. Klebsiella pneumoniae bloodstream infection: epidemiology and impact of inappropriate empirical therapy. Medicine (Baltimore), 2014, vol. 93, no. 17, pp. 298–309. doi: 10.1097/MD.0000000000000111
- Hernández-García M., Pérez-Viso B., León-Sampedro R., Navarro-San Francisco C., López-Fresneña N., Díaz-Agero C., Morosini M.I., Ruiz-Garbajosa P., Cantón R. Outbreak of NDM-1+CTX-M-15+DHA-1-producing Klebsiella pneumoniae high-risk clone in Spain owing to an undetectable colonised patient from Pakistan. Int. J. Antimicrob. Agents, 2019, vol. 54, no. 2, pp. 233–239. doi: 10.1016/j.ijantimicag.2019.05.021
- Herridge W.P., Shibu P., O’Shea J., Brook T.C., Hoyles L. Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses. J. Med. Microbiol., 2020, vol. 69, no. 2, pp. 176–194. doi: 10.1099/jmm.0.001141
- Hu D., Li Y., Ren P., Tian D., Chen W., Fu P., Wang W., Li X., Jiang X. Molecular epidemiology of hypervirulent carbapenemase-producing Klebsiella pneumoniae. Front. Cell Infect. Microbiol., 2021, vol. 11: 661218. doi: 10.3389/fcimb.2021.661218
- Hu P., Chen J., Chen Y., Zhou T., Xu X., Pei X. Molecular epidemiology, resistance, and virulence properties of Pseudomonas aeruginosa cross-colonization clonal isolates in the non-outbreak setting. Infect. Genet. Evol., 2017, vol. 55, pp. 288–296. doi: 10.1016/j.meegid.2017.09.010
- Karlsson M., Stanton R.A., Ansari U., McAllister G., Chan M.Y., Sula E., Grass J.E., Duffy N., Anacker M.L., Witwer M.L., Rasheed J.K., Elkins C.A., Halpin A.L. Identification of a Carbapenemase-producing hypervirulent Klebsiella pneumoniae Isolate in the United States. Antimicrob. Agents Chemother., 2019, vol. 63, no. 7: e00519-19. doi: 10.1128/AAC.00519-19
- Khrulnova S., Fedorova A., Frolova I., Tandilova K., Likold E., Klyasova G. Distribution of virulence genes and capsule types in Klebsiella pneumoniae among bloodstream isolates from patients with hematological malignancies. Diagn. Microbiol. Infect. Dis., 2022, vol. 104, no. 1: 115744. doi: 10.1016/j.diagmicrobio.2022
- Kochan T.J., Nozick S.H., Medernach R.L., Cheung B.H., Gatesy S.W.M., Lebrun-Corbin M., Mitra S.D., Khalatyan N., Krapp F., Qi C., Ozer E.A., Hauser A.R. Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates. BMC Infect. Dis., 2022, vol. 22, no. 1: 603. doi: 10.1186/s12879-022-07558-1
- Liu C., Du P., Xiao N., Ji F., Russo T.A., Guo J. Hypervirulent Klebsiella pneumoniae is emerging as an increasingly prevalent K. pneumoniae pathotype responsible for nosocomial and healthcare-associated infections in Beijing, China. Virulence, 2020, vol. 11, no. 1, pp. 1215–1224. doi: 10.1080/21505594.2020.1809322
- Lv J., Zhu J., Wang T., Xie X., Wang T., Zhu Z., Chen L., Zhong F., Du H. The role of the two-component QseBC signaling system in biofilm formation and virulence of hypervirulent Klebsiella pneumoniae ATCC43816. Front. Microbiol., 2022, vol. 13: 817494. doi: 10.3389/fmicb.2022.817494
- Mairi A., Pantel A., Ousalem F., Sotto A., Touati A., Lavigne J.P. OXA-48-producing Enterobacterales in different ecological niches in Algeria: clonal expansion, plasmid characteristics and virulence traits. J. Antimicrob. Chemother., 2019, vol. 74, no. 7, pp. 1848–1855. doi: 10.1093/jac/dkz146
- Marques A.T., Tanoeiro L., Duarte A., Gonçalves L., Vítor J.M.B., Vale F.F. Genomic analysis of prophages from Klebsiella pneumoniae clinical Isolates. Microorganisms, 2021, vol. 9, no. 11: 2252. doi: 10.3390/microorganisms9112252
- Paczosa M.K., Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol. Mol. Biol. Rev., 2016, vol. 80, no. 3, pp. 629–661. doi: 10.1128/MMBR.00078-15
- Pan H., Lou Y., Zeng L., Wang L., Zhang J., Yu W., Qiu Y. Infections caused by carbapenemase-producing Klebsiella pneumoniae: microbiological characteristics and risk factors. Microb. Drug Resist., 2019, vol. 25, no. 2, pp. 287–296. doi: 10.1089/mdr.2018.0339
- Potron A, Poirel L, Rondinaud E, Nordmann P. Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. Euro Surveill., 2013, vol. 18, no. 31: 20549. doi: 10.2807/1560-7917.es2013.18.31.20549
- Stepanović S., Vuković D., Hola V., Di Bonaventura G., Djukić S., Cirković I., Ruzicka F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 2007, vol. 115, no. 8, pp. 891–899. doi: 10.1111/j.1600-0463.2007.apm_630.x
- Wyres K.L., Holt K.E. Klebsiella pneumoniae population genomics and antimicrobial-resistant clones. Trends Microbiol., 2016, vol. 24, no. 12, pp. 944–956. doi: 10.1016/j.tim.2016.09.007
- Xu M., Fu Y., Kong H., Chen X., Chen Y., Li L., Yang Q. Bloodstream infections caused by Klebsiella pneumoniae: prevalence of blaKPC, virulence factors and their impacts on clinical outcome. BMC Infect. Dis., 2018, vol. 18, no. 1: 358. doi: 10.1186/s12879-018-3263-x
- Yang Y., Yang Y., Chen G., Lin M., Chen Y., He R., Galvão K.N., El-Gawad El-Sayed Ahmed M.A., Roberts A.P., Wu Y., Zhong L.L., Liang X., Qin M., Ding X., Deng W., Huang S., Li H.Y., Dai M., Chen D.Q., Zhang L., Liao K., Xia Y., Tian G.B. Molecular characterization of carbapenem-resistant and virulent plasmids in Klebsiella pneumoniae from patients with bloodstream infections in China. Emerg. Microbes. Infect., 2021, vol. 10, no. 1, pp. 700–709. doi: 10.1080/22221751.2021.1906163
- Yuan Y., Wang J., Yao Z., Ma B., Li Y., Yan W., Wang S., Ma Q., Zhang J., Xu J., Li L., Wang Y., Fan E. Risk factors for Carbapenem-resistant Klebsiella pneumoniae bloodstream infections and outcomes. Infect. Drug. Resist., 2020, vol. 13, pp. 207–215. doi: 10.2147/IDR.S223243
- Zhang S., Zhang X., Wu Q., Zheng X., Dong G., Fang R., Zhang Y., Cao J., Zhou T. Clinical, microbiological, and molecular epidemiological characteristics of Klebsiella pneumoniae-induced pyogenic liver abscess in southeastern China. Antimicrob. Resist. Infect. Control, 2019, vol. 8: 166. doi: 10.1186/s13756-019-0615-2
- Zheng X., Wang J.F., Xu W.L., Xu J., Hu J. Clinical and molecular characteristics, risk factors and outcomes of Carbapenem-resistant Klebsiella pneumoniae bloodstream infections in the intensive care unit. Antimicrob. Resist. Infect. Control, 2017, vol. 6: 102. doi: 10.1186/s13756-017-0256-2
Supplementary files
