Strategies for tularemia pathogen survival, spread and virulence

Cover Page

Cite item

Full Text

Abstract

The bacterium Francisella tularensis is the etiological agent of tularemia, a natural focal, especially dangerous infection, which, “thanks to” its low infectious dose and ability to be transmitted to humans via all possible routes, is a potential bioterrorism agent. This pathogen has been known to mankind for over a hundred years, but it is still impossible to prevent massive human disease outbreaks and sporadic incidence cases, whereas tularemia diagnosis may be verified within several days-to-weeks. The basis for tularemia causative agent virulence is based on its ability to disrupt phagocyte function. In animals and humans, the various Francisella tularensis systems work together to bypass host immune system, attach to and enter eukaryotic cells, block phagosome-lysosome fusion, multiply in various host cells without being detected, inhibit their destruction and cause host cell death to release bacteria and infect neighboring tissue cells, thus developing an infectious disease in different organs. This is achieved through a unique complement-dependent penetration process into host cell, called loop phagocytosis, and an unusual inert endotoxin as well as variation in diverse forms of “free” lipid A modifications and lipid A in the LPS composition, its dynamic acyl chain length regulation, and specifically combined regulatory factors to induce the “pathogenicity island” protein synthesis. Accumulated point mutations, intragenomic rearrangements, deletions, insertions, duplications, transpositions, gene degradation, variation in the number of copies in repeated DNA sequences, as well as homologous and non-homologous recombinations underlie a markedly expanded potential for existence of the tularemia causative agent: they contribute to the holarctic subspecies strain survival in varying conditions, including osmotic shock, to form multiple resistance to various toxic substances and alter F. tularensis subspecies virulence. Analyzing a whole body of publications on the abovementioned aspects for tularemia causative agent life activity attempts to combine the differences, structural features and “tricks” of the F. tularensis species cells allowing them to be a powerful pathogen, with a high potential to adapt upon low pathogen variability and a limited genome length compared with other specially dangerous bacteria.

About the authors

Tamara Yu. Kudryavtseva

State Research Center for Applied Biotechnology and Microbiology

Email: mokrievich@obolensk.org

PhD (Biology), Senior Researcher, Department of Especially Dangerous Infections

Russian Federation, Obolensk

Alexander N. Mokrievich

State Research Center for Applied Biotechnology and Microbiology

Author for correspondence.
Email: mokrievich@obolensk.org

PhD, MD (Medicine), Head of the Department of Especially Dangerous Infections

Russian Federation, Obolensk

References

  1. Кудрявцева Т.Ю., Попов В.П., Мокриевич А.Н., Куликалова Е.С., Холин А.В., Мазепа А.В., Борзенко М.А., Пичурина Н.Л., Павлович Н.В., Носков А.К., Транквилевский Д.В., Храмов М.В., Дятлов И.А. Множественная лекарственная устойчивость клеток F. tularensis subsp. holarctica, анализ эпизоотологической и эпидемиологической ситуации по туляремии на территории Российской Федерации в 2022 г. и прогноз на 2023 г. // Проблемы особо опасных инфекций. 2023. № 1. С. 37–47. [Kudryavtseva T.Yu., Popov V.P., Mokrievich A.N., Kulikalova E.S., Kholin A.V., Mazepa A.V., Borzenko M.A., Pichurina N.L., Pavlovich N.V., Noskov A.K., Trankvilevsky D.V., Khramov M.V., Dyatlov I.A. Multidrug resistance of F. tularensis subsp. holarctica, epizootiological and epidemiological analysis of the situation on tularemia in the Russian Federation in 2022 and forecast for 2023. Problemy osobo opasnykh infektsiy = Problems of Particularly Dangerous Infections, 2023, no. 1, pp. 37–47. (In Russ.)] doi: 10.21055/0370-1069-2023-1-37-47
  2. Мирончук Ю.В., Мазепа А.В. Жизнеспособность и вирулентность Francisella tularensis subsp. holarctica в водных экосистемах (экспериментальное изучение) // Журнал микробиологии, эпидемиологии и иммунобиологии. 2002. № 2. С. 9–13. [Mironchuk Iu.V., Mazepa A.V. Viability and virulence of Francisella tularensis subsp. holarctica in water ecosystems (experimental study). Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2002, vol. 2, pp. 9–13. (In Russ.)]
  3. Олсуфьев Н.Г., Руднев Г.П. Туляремия. М.: Медицина, 1960. 459 c. [Olsuf’ev N.G., Rudnev G.P. Tularemia. Moscow: Meditsina, 1960. 459 p. (In Russ.)]
  4. Титов Л.П. Классификация, номенклатура и эволюция значимых для медицины бактерий // Медицинский журнал. 2006. № 1. С. 13–18. [Titov L.P. Classification, nomenclature and evolution of medically significant bacteria. Meditsinskiy zhurnal = Medical Journal, 2006, pp. 13–18. (In Russ.)]
  5. Abd H., Johansson T., Golovliov I., Sandstrom G., Forsman M. Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl. Environ. Microbiol, 2003, vol. 69, no. 1, pp. 600–606. doi: 10.1128/AEM.69.1.600-606.2003
  6. Abdellahoum Z., Maurin M., Bitam I. Tularemia as a mosquito-borne disease. Microorganisms, 2020, vol. 9: 26. doi: 10.3390/microorganisms9010026
  7. Ahmad S., Hunter L., Qin A., Mann B.J., van Hoek M.L. Azithromycin effectiveness against intracellular infections of Francisella. BMC Microbiol., 2010, vol. 10: 123. doi: 10.1186/1471-2180-10-123
  8. Alqahtani M., Ma Z., Ketkar H., Suresh R.V., Malik M., Bakshi C.S. Characterization of a unique outer membrane protein required for oxidative stress resistance and virulence of Francisella tularensis. J. Bacteriol. 2018, vol. 200, no. 8: e00693-17. doi: 10.1128/JB.00693-17
  9. Apicella M.A., Post D.M., Fowler A.C., Jones B.D., Rasmussen J.A., Hunt J.R., Imagawa S., Choudhury B., Inzana T.J., Maier T.M., Frank D.W., Zahrt T.C., Chaloner K., Jennings M.P., McLendon M.K., Gibson B.W. Identification, characterization and immunogenicity of an O-antigen capsular polysaccharide of Francisella tularensis. PLoS One, 2010, vol. 5, no. 7: e11060. doi: 10.1371/journal.pone.0011060
  10. Ariza-Miguel J., Johansson A., Fernández-Natal M.I., Martínez-Nistal C., Orduña A., Rodríguez-Ferri E.F., Hernández M., Rodríguez-Lázaro D. Molecular Investigation of tularemia outbreaks, Spain, 1997–2008. Emerg. Infect. Dis., 2014, vol. 20, no. 5, pp. 754–761. doi: 10.3201/eid2005.130654
  11. Bäckman S., Näslund J., Forsman M., Thelaus J. Transmission of tularemia from a water source by transstadial maintenance in a mosquito vector. Sci. Rep., 2015, vol. 5: 7793. doi: 10.1038/srep07793
  12. Bandara A.B., Champion A.E., Wang X., Berg G., Apicella M.A., McLendon M., Azadi P., Snyder D.S., Inzana T.J. Mutagenesis of a capsule-like complex (CLC) from Francisella tularensis, and contribution of the CLC to F. tularensis virulence in mice. PLoS One, 2011, vol. 6, no. 4: e19003. doi: 10.1371/journal.pone.0019003
  13. Barker J.H., Kaufman J.W., Zhang D.S., Weiss J.P. Metabolic labeling to characterize the overall composition of Francisella lipid A and LPS grown in broth and in human phagocytes. Innate Immun., 2014, no. 20, pp. 88–103. doi: 10.1177/1753425913485308
  14. Beckstrom-Sternberg S.M., Auerbach R.K., Godbole S., Pearson J.V., Beckstrom-Sternberg J.S., Deng Z., Munk C., Kubota K., Zhou Y., Bruce D., Noronha J., Scheuermann R.H., Wang A., Wei X., Wang J., J. Hao, Wagner D.M., Brettin T.S., Brown N., Gilna P., Keim P.S. Complete genomic characterization of a pathogenic A.II strain of Francisella tularensis subspecies tularensis. PLoS One, 2007, vol. 2, no. 9: e947. doi: 10.1371/journal.pone.0000947
  15. Biot F.V., Bachert B.A., Mlynek K.D., Toothman R.G., Koroleva G.I., Lovett S.P., Klimko C.P., Palacios G.F., Cote C.K., Ladner J.T., Bozue J.A. Evolution of antibiotic resistance in surrogates of Francisella tularensis (LVS and Francisella novicida): effects on biofilm formation and fitness. Front. Microbiol., 2020, vol. 11: 593542. doi: 10.3389/fmicb.2020.593542
  16. Biswas S., Raoult D., Rolain J.M. A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis. Int. J. Antimicrob. Agents, 2008, no. 32, pp. 207–220. doi: 10.1016/j. ijantimicag.2008.03.017
  17. Boisset S., Caspar Y., Sutera V., Maurin M. New therapeutic approaches for treatment of tularaemia: a review. Front. Cell. Infect. Microbiol., 2014, vol. 4: 40. doi: 10.3389/fcimb.2014.00040
  18. Bradford M.K., Elkins K.L. Immune lymphocytes halt replication of Francisella tularensis LVS within the cytoplasm of infected macrophages. Sci. Rep., 2020, vol. 10: 12023. doi: 10.1038/s41598-020-68798-2
  19. Broman T., Thelaus J., Andersson A.C., Bäckman S., Wikström P., Larsson E., Granberg M., Karlsson L., Bäck E., Eliasson H., Mattsson R., Sjöstedt A., Forsman M. Molecular detection of persistent Francisella tularensis subspecies holarctica in natural waters. Int. J. Microbiol., 2011: 851946. doi: 10.1155/2011/851946
  20. Brunet C.D., Hennebique A., Peyroux J., Pelloux I., Caspar Y., Maurin M. Presence of Francisella tularensis subsp. holarctica DNA in the aquatic environment in France. Microorganisms, 2021, vol. 9: 1398. doi: 10.3390/microorganisms9071398
  21. Brunet C.D., Peyroux J., Pondérand L., Bouillot S., Girard T., Faudry É., Maurin M., Caspar Y. Aquatic long-term persistence of Francisella tularensis ssp. holarctica is driven by water temperature and transition to a viable but non-culturable state. bioRxiv, 2022: 480867. doi: 10.1101/2022.02.18.480867
  22. Caspar Y., Maurin M. Francisella tularensis susceptibility to antibiotics: a comprehensive review of the data obtained in vitro and in animal models. Front. Cell. Infect. Microbiol., 2017, vol. 7: 122. doi: 10.3389/fcimb.2017. 00122
  23. Challacombe J.F., Pillai S., Kuske C.R. Shared features of crypticplasmids from environmental and pathogenic Francisella species. PLoS One, 2017, vol. 12: e0183554. doi: 10.1371/journal.pone.0183554
  24. Champion M.D., Zeng Q.D., Nix E.B., Nano F.E., Keim P., Kodira C.D., Borowsky M., Young S., Koehrsen M., Engels R., Pearson M., Howarth C., Larson L., White J., Alvarado L., Forsman M., Bearden S.W., Sjöstedt A., Titball R., Michell S.L., Birren B., Galagan J. Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies. PLoS Pathog., 2009, vol. 5, no. 5: e1000459. doi: 10.1371/journal.ppat.1000459
  25. Chen L.F., Kaye D. Current use for old antibacterial agents: polymyxins, rifamycins, and aminoglycosides. Med. Clin. North Am., 2011, no. 95, pp. 819–842. doi: 10.1016/j.mcna.2011.03.007
  26. Chin C.Y., Zhao J., Llewellyn A.C., Golovliov I., Sjöstedt A., Zhou P., Weiss D.S. Francisella FlmX broadly affects lipopolysaccharide modification and virulence. Cell Rep., 2021, vol. 35, no. 11: 109247. doi: 10.1016/j.celrep.2021.109247. PMID: 34133919
  27. Clemens D.L., Lee B.Y., Horwitz M.A. Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect. Immun., 2004, no. 72, pp. 3204–3217. doi: 10.1128/IAI.72.6.3204-3217.2004
  28. Clemens D.L., Lee B.Y., Horwitz M.A. Francisella tularensis enters macrophages via a novel process involving pseudopod loops. Infect. Immun., 2005, vol. 73, pp. 5892–5902. doi: 10.1128/IAI.73.9.5892-5902.2005
  29. Clemens D.L., Lee B.Y., Horwitz M.A. Francisella tularensis phagosomal Escape does not require acidification of the phagosome. Infect. Immun., 2009, vol. 77, pp. 1757–1773. doi: 10.1128/IAI.01485-08
  30. Clemens D.L., Lee B.Y., Horwitz M.A. O-antigen-deficient Francisella tularensis Live Vaccine Strain mutants are ingested via an aberrant form of looping phagocytosis and show altered kinetics of intracellular trafficking in human macrophages. Infect. Immun., 2012, vol. 80, pp. 952–967. doi: 10.1128/IAI.05221-11
  31. Cole L.E., Yang Y., Elkins K.L., Fernandez E.T., Qureshi N., Shlomchik M.J., Herzenberg L.A., Vogel S.N. Antigenspecific B-1a antibodies induced by Francisella tularensis LPS provide long-term protection against F. tularensis LVS challenge. Proc. Natl Acad. Sci. USA, 2009, vol. 106, no. 11, pp. 4343–4348. doi: 10.1073/pnas.0813411106
  32. Colquhoun D.J., Duodu S. Francisella infections in farmed and wild aquatic organisms. Vet. Res., 2011, vol. 42, no. 1: 47. doi: 10.1186/1297-9716-42-47
  33. Colquhoun D.J., Larsson P., Duodu S., Forsman M. The family Francisellaceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds). The Prokaryotes. Springer, Berlin, Heidelberg, 2014. doi. 10.1007/978-3-642-38922-1_236
  34. Conlan J.W., North R.J. Early pathogenesis of infection in the liver with the facultative intracellular bacteria Listeria monocytogenes, Francisella tularensis, and Salmonella typhimurium involves lysis of infected hepatocytes by leukocytes. Infect. Immun., 1992, vol. 60, pp. 5164–5171. doi: 10.1128/IAI.60.12.5164-5171
  35. Conlan J.W., Shen H., Webb A., Perry M.B. Mice vaccinated with the O antigen of Francisella tularensis LVS lipopolysaccharide conjugated to bovine serum albumin develop varying degrees of protective immunity against systemic or aerosol challenge with virulent type A and type B strains of the pathogen. Vaccine, 2002, vol. 20, pp. 3465–3471. doi: 10.1016/s0264-410x(02)00345-6
  36. Conlan J.W., Chen W., Shen H., Webb A., KuoLee R. Experimental tularemia in mice challenged by aerosol or intradermally with virulent strains of Francisella tularensis: bacteriologic and histopathologic studies. Microb. Pathog., 2003, vol. 34, no. 5, pp. 239–248. doi: 10.1016/s0882-4010(03)00046-9
  37. Cowley S.C. Editorial: Proinflammatory cytokines in pneumonic tularemia: too much too late? J. Leukoc. Biol., 2009, vol. 86, no. 3, pp. 469–470. doi: 10.1189/jlb.0309119
  38. Cowley S.C., Elkins K.L. Immunity to Francisella. Front. Microbiol., 2011, vol. 2: 26. doi: 10.3389/fmicb.2011.00026
  39. Dai S., Rajaram M.V., Curry H.M., Leander R., Schlesinger L.S. Fine tuning inflammation at the front door: macrophage complement receptor 3-mediates phagocytosis and immune suppression for Francisella tularensis. PLoS Pathog., 2013, vol. 9: e1003114. doi: 10.1371/journal.ppat.1003114
  40. DelVecchio V.G., Kapatral V., Elzer P., Patra G., Mujer C.V. The genome of Brucella melitensis. Vet. Microbiol., 2002, vol. 90, no. 1–4, pp. 587–592. doi: 10.1016/s0378-1135(02)00238-9
  41. Forslund A.L., KuoppaK., Svensson K., Salomonsson E., Johansson A., Byström M., Oyston P.C.F., Michell S.L., Titball R.W., Noppa L., Frithz-Lindsten E., Forsman M., Forsberg A. Direct repeat-mediated deletion of a type IV pilin gene results in major virulence attenuation of Francisella tularensis. Mol. Microbiol., 2006, vol. 59, no. 6, pp. 1818–1830. doi: 10.1111/j.1365-2958.2006.05061.x
  42. Forslund A.L., Salomonsson E.N., Golovliov I., Kuoppa K., Michell S., Titball R., Oyston P., Noppa L., Sjöstedt A., Forsberg A. The type IV pilin, PilA, is required for full virulence of Francisella tularensis subspecies tularensis. BMC Microbiol., 2010, vol. 10: 227. doi: 10.1186/1471-2180-10-227
  43. Forsman M., Henningson E.W., Larsson E., Johansson T., Sandström G. Francisella tularensis does not manifest virulence in viable but non-culturable state. FEMS Microbiol. Ecol., 2000, vol. 31, no. 3, pp. 217–224. doi: 10.1111/j.1574-6941.2000.tb00686.x
  44. Fritz D.L., England M.J., Miller L., Waag D.M. Mouse models of aerosol-acquired tularemia caused by Francisella tularensis types A and B. Comp. Med., 2014, vol. 64, no. 5, pp. 341–350.
  45. Geier H., Celli J. Phagocytic receptors dictate phagosomal escape and intracellular proliferation of Francisella tularensis. Infect. Immun., 2011, vol. 79, pp. 2204–2214. doi: 10.1128/IAI.01382-10
  46. Gentry M., Taormina J., Pyles R.B., Yeager L., Kirtley M., Popov V.L., Klimpel G., Eaves-Pyles T. Role of primary human alveolar epithelial cells in host defense against Francisella tularensis infection. Infect. Immun., 2007, vol. 75, no. 8, pp. 3969–3978. doi: 10.1128/IAI.00157-07
  47. Gil H., Platz G.J., Forestal C.A., Monfett M., Bakshi C.S., Sellati T.J., Furie M.B., Benach J.L., Thanassi D.G. Deletion of TolC orthologs in Francisella tularensis identifies roles in multidrug resistance and virulence. Proc. Natl Acad. Sci. USA, 2006, vol. 103, no. 34, pp. 12897–12902. doi: 10.1073/pnas.0602582103
  48. Girgis H.S., Hottes A.K., Tavazoie S. Genetic architecture of intrinsic antibiotic susceptibility. PLoS One, 2009, vol. 4, no. 5: e5629. doi: 10.1371/journal.pone.0005629
  49. Golovliov I., Baranov V., Krocova Z., Kovarova H., Sjostedt A. An аttenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect. Immun., 2003, vol. 71, pp. 5940–5950. doi: 10.1128/IAI.71.10.5940-5950.2003
  50. Golovliov I., Bäckman S., Granberg M., Salomonsson E., Lundmark E., Näslund J., Busch J.D., Birdsell D., Sahl J.W., Wagner D.M., Johansson A., Forsman M., Thelaus J. Long-termsurvival of virulent tularemia pathogens outside a host in conditions that mimic natural aquatic environments. Appl. Environ. Microbiol., 2021, vol. 87: e02713-20. doi: 10.1128/AEM .02713-20
  51. Gunn J.S., Ernst R.K. The structure and function of Francisella lipopolysaccharide. Ann. NY Acad. Sci., 2007, no. 1105, pp. 202–218. doi: 10.1196/annals.1409.006
  52. Gunnell M.K., Adams B.J., Robison R.A. The genetic diversity and evolution of Francisella tularensis with comments on detection by PCR. Curr. Issues Mol. Biol., 2016, vol. 18, no. 1, pp. 79–91. doi: 10.21775/cimb.018.079
  53. Hennebique A., Boisset S., Maurin M. Tularemia as a waterborne disease: a review. Emerg. Microbes Infect., 2019, vol. 8, no. 1, pp. 1027–1042, doi: 10.1080/22221751.2019.1638734
  54. Hopla C.E. The ecology of tularemia. Adv. Vet. Sci. Comp. Med., 1974, vol. 18, pp. 25–53.
  55. Jackson J., McGregor A., Cooley L., Ng J., Brown M., Ong C.W., Darcy C., Sintchenko V. Francisella tularensis subspecies holarctica, Tasmania, Australia, 2011. Emerg. Infect. Dis., 2012, vol. 18, no. 9, pp. 1484–1486. doi: 10.3201/eid1809.111856
  56. Jia Q., Lee B.Y., Bowen R., Dillon B.J., Som S.M., Horwitz M.A. A Francisella tularensis live vaccine strain (LVS) mutant with a deletion in capB, encoding a putative capsular biosynthesis protein, is significantly more attenuated than LVS yet induces potent protective immunity in mice against F. tularensis challenge. Infect. Immun., 2010, vol. 78, pp. 4341–4355. doi: 10.1128/IAI.00192-10
  57. Jia Q., Horwitz M.A. Live attenuated tularemia vaccines for protection against respiratory challenge with virulent F. tularensis subsp. tularensis. Front. Cell. Infect. Microbiol., 2018, vol. 8: 154. doi: 10.3389/fcimb.2018.00154
  58. Jones B.D., Faron M., Rasmussen J.A. Fletcher J.R. Uncovering the components of the Francisella tularensis virulence stealth strategy. Front. Cell. Infect. Microbiol., 2014, vol. 4: 32. doi: 10.3389/fcimb.2014.00032
  59. Jones C.L., Napier B.A., Sampson T.R., Llewellyn A.C., Schroeder M.R., Weiss D.S. Subversion of host recognition and defense systems by Francisella spp. Microbiol. Mol. Biol. Rev., 2012, vol. 76, no. 2, pp. 383–404. doi: 10.1128/MMBR.05027-11
  60. Karlsson E., Golovliov I., Lärkeryd A., Granberg M., Larsson E., Öhrman C., Niemcewicz M., Birdsell D., Wagner D.M., Forsman M., Johansson A. Clonality of erythromycin resistance in Francisella tularensis. J. Antimicrob. Chemother., 2016, vol. 71, pp. 2815–2823. doi: 10.1093/jac/dkw235
  61. Kassinger S.J., van Hoek M.L. Genetic determinants of antibiotic resistance in Francisella. Front. Microbiol., 2021, vol. 12: 644855. doi: 10.3389/fmicb.2021.644855
  62. Kingry L.C., Petersen J.M. Comparative review of Francisella tularensis and Francisella novicida. Front. Cell. Infect. Microbiol., 2014, vol. 4: 35. doi: 10.3389/fcimb.2014.00035
  63. Kopping E.J., Doyle C.R., Sampath V., Thanassi D.G. Contributions of TolC orthologs to Francisella tularensis Schu S4 multidrug resistance, modulation of host cell responses, and virulence. Infect. Immun., 2019, vol. 87: e00823-18. doi: 10.1128/IAI.00823-18
  64. Kubelkova K., Macela A. Francisella and antibodies. Microorganisms, 2021, vol. 9, no. 10: 2136. doi: 10.3390/microorganisms9102136
  65. Kubelkova K., Hudcovic T., Kozakova H., Pejchal J.,, Macela A. Early infection-induced natural antibody response. Sci. Rep., 2021, vol. 11, no. 1: 1541. doi: 10.1038/s41598-021-81083-0
  66. Kugeler K.J., Mead P.S., Janusz A.M., Staples J.E., Kubota K.A., Chalcraft L.G., Petersen J.M. Molecular epidemiology of Francisella tularensis in the United States. Clin. Infect. Dis., 2009, vol. 48, no. 7, pp. 863–870. doi: 10.1086/597261
  67. Kumar R., Bröms J.E., Sjöstedt A. Exploring the diversity within the genus Francisella — an integrated pan-genome and genome-mining approach. Front. Microbiol., 2020, vol. 11: 1928. doi: 10.3389/fmicb.2020.01928
  68. Lai X.H., Shirley R.L., Crosa L., Kanistanon D., Tempel R., Ernst R.K., Gallagher L.A., Manoil C., Heffron F. Mutations of Francisella novicida that alter the mechanism of its phagocytosis by murine macrophages. PLoS One, 2010, vol. 5, no. 7: e11857. doi: 10.1371/journal.pone.0011857
  69. Larsson P., Elfsmark D., Svensson K., Wikström P., Forsman M., Brettin T., Keim P., Johansson A. Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen. PLoS Pathog., 2009, vol. 5, no. 6: e1000472. doi: 10.1371/journal.ppat.1000472
  70. Lewisch E., Menanteau-Ledouble S., Tichy A., El-Matbouli M. Susceptibility of common carp and sunfish to a strain of Francisella noatunensis subsp. orientalis in a challenge experiment. Dis. Aquat. Organ., 2016, vol. 121, no. 2, pp. 161–166. doi: 10.3354/dao03044
  71. Li Y., Powell D.A., Shaffer S.A., Rasko D.A., Pelletier M.R., Leszyk J.D., Scott A.J., Masoudi A., Goodlett D.R., Wang X., Raetz C.R.H., Ernst R.K. LPS remodeling is an evolved survival strategy for bacteria. Proc. Natl Acad. Sci. USA, 2012, vol. 109, no. 22, pp. 8716–8721. doi: 10.1073/pnas.1202908109
  72. Lindemann S.R., McLendon M.K., Apicella M.A., Jones B.D. An in vitro model system used to study adherence and invasion of Francisella tularensis live vaccines training nonphagocytic cells. Infect.Immun., 2007, vol. 75, pp. 3178–3182. doi: 10.1128/IAI.01811-06
  73. Lundstrom J.O., Andersson A.C., Backman S., Schafer M.L., Forsman M., Thelaus J. Transstadial transmission of Francisella tularensis holarctica in mosquitoes, Sweden. Emerg. Infect. Dis., 2011, vol. 17, no. 5, pp. 794–799. doi: 10.3201/eid1705.100426
  74. Ma Z., Banik S., Rane H., Mora V.T., Rabadi S.M., Doyle C.R., Thanassi D.G., Bakshi C.S., Malik M. EmrA1 membrane fusion protein of Francisella tularensis LVS is required for resistance to oxidative stress, intramacrophage survival and virulence in mice. Mol. Microbiol., 2014, vol. 91, no. 5, pp. 976–995. doi: 10.1111/mmi.12509
  75. Mahawar M., Atianand M.K., Dotson R.J., Mora,V., Rabadi S.M., Metzger D.W., Huntley J.F., Harton J.A., Malik M., Bakshi C.S. Identification of a novel Francisella tularensis factor required for intramacrophage surviva land subversion of innate immune response. J. Biol. Chem., 2012, vol. 287, no. 30, pp. 25216–25229. doi: 10.1074/jbc.M112.367672
  76. Martin-Garcia J.M., Hansen D.T., Zook J., Loskutov A.V., Robida M.D., Craciunescu F.M., Sykes K.F., Wachter R.M., Fromme P., Allen J.P. Purification and biophysical characterization of the CapA membrane protein FTT0807 from Francisella tularensis. Biochemistry, 2014, vol. 53, no. 12, pp. 1958–1970. doi: 10.1021/bi401644s
  77. Martinez J.L. General principles of antibiotic resistance in bacteria. Drug Discov. Today Technol., 2014, vol. 11, pp. 33–39. doi: 10.1016/j.ddtec.2014.02.001
  78. McCaffrey R.L., Allen L.A. Francisella tularensis LVS evades killing by human neutrophils via inhibition of the respiratory burst and phagosome escape. J. Leukoc. Biol., 2006, vol. 80, pp. 1224–1230. doi: 10.1189/jlb.0406287
  79. Melillo A., Sledjeski D.D., Lipski S., Wooten R.M., Basrur V., Lafontaine E.R. Identification of a Francisella tularensis LVS outer membrane protein that confers adherence to A549 human lung cells. FEMS Microbiol. Lett., 2006, vol. 263, pp. 102–108. doi: 10.1111/j.1574-6968.2006.00413.x
  80. Michell S.L., Dean R.E., Eyles J.E., Hartley M.G., Waters E., Prior J.L., Titball R.W., Oyston P.С.F. Deletion of the Bacillus anthracis capB homologue in Francisella tularensis subspecies tularensis generates an attenuated strain that protects mice against virulent tularaemia. J. Med. Microbiol., 2010, vol. 59, pp. 1275–1284. doi: 10.1099/jmm.0.018911-0
  81. Moreland J.G., Hook J.S., Bailey G., Ulland T., Nauseef W.M. Francisella tularensis directly interacts with the endothelium and recruits neutrophils with a blunted inflammatory phenotype. Am. J. Physiol. Lung Cell. Mol. Physiol., 2009, vol. 296, no. 6, pp. L1076–L1084. doi: 10.1152/ajplung.90332.2008
  82. Mörner T. The ecology of tularaemia. Rev. Sci. Tech., 1992, vol. 11, no. 4, pp. 1123–1130.
  83. Nano F.E., Zhang N., Cowley S.C., Klose K.E., Cheung K.K., Roberts M.J., Ludu J.S., Letendre G.W., Meierovics A.I., Stephens G., Elkins K.L. A Francisella tularensis pathogenicity island required for intramacrophage growth. J. Bacteriol., 2004, vol. 186, no. 19, pp. 6430–6436. doi: 10.1128/JB.186.19.6430-6436.2004
  84. Nano F.E., Schmerk C. The Francisella pathogenicity island. Ann. NY Acad. Sci., 2007, vol. 1105, pp. 122–137. doi: 10.1196/annals.1409.000
  85. Öhrman C., Sahl J.W., Sjödin A., Uneklint I., Ballard R., Karlsson L., McDonough R.F., Sundell D., Soria K., Bäckman S., Chase K., Brindefalk B., Sozhamannan S., Vallesi A., Hägglund E., Ramirez-Paredes J.G., Thelaus J., Colquhoun D., Myrtennäs K., Birdsell D., Johansson A., Wagner D.M., Forsman M. Reorganized genomic taxonomy of Francisellaceae enables design of robust environmental PCR assays for detection of Francisella tularensis. Microorganisms, 2021, vol. 9, no. 1: 146. doi: 10.3390/microorganisms9010146
  86. Okan N.A., Kasper D.L. The atypical lipopolysaccharide of Francisella. Carbohydr. Res., 2013, vol. 378, pp. 79–83. doi: 10.1016/j.carres.2013.06.015
  87. Ozanic M., Marecic V., Kwaik Y.A., Santic M. The divergent intracellular lifestyle of Francisella tularensis in evolutionarily distinct host cells. PLoS Pathog., 2015, vol. 11, no. 12: e1005208. doi: 10.1371/journal.ppat.1005208
  88. Parkhill J., Wren B.W., Thomson N.R., Titball R.W., Holden M.T., Prentice M.B., Sebaihia M., James K.D., Churcher C., Mungall K.L., Baker S., Basham D., Bentley S.D., Brooks K., Cerdeño-Tárraga A.M., Chillingworth T., Cronin A., Davies R.M., Davis P., Dougan G., Feltwell T., Hamlin N., Holroyd S., Jagels K., Karlyshev A.V., Leather S., Moule S., Oyston P.C., Quail M., Rutherford K., Simmonds M., Skelton J., Stevens K., Whitehead S., Barrell B.G. Genome sequence of Yersinia pestis, the causative agent of plague. Nature, 2001, vol. 413, no. 6855, pp. 523–527. doi: 10.1038/35097083
  89. Parra M.C., Shaffer S.A., Hajjar A.M., Gallis B.M., Hager A., Goodlett D.R., Guina T., Miller S., Collins C.M. Identification, cloning, expression, and purification of Francisella lpp3: an immunogenic lipoprotein. Microbiol. Res., 2010, vol. 165, no. 7, pp. 531–545. doi: 10.1016/j.micres.2009.11.004
  90. Perez-Castrillon J.L., Bachiller-Luque P., Martin-Luquero M., Mena-Martin F.J., Herreros V. Tularemia epidemic in northwestern Spain: clinical description and therapeutic response. Clin. Infect. Dis., 2001, vol. 33, pp. 573–576. doi: 10.1086/322601
  91. Petrosino J.F., Xiang Q., Karpathy S.E., Jiang H.Y., Yerrapragada S., Liu Y.M., Gioia J., Hemphill L., Gonzalez A., Raghavan T.M., Uzman A., Fox G.E., Highlander S., Reichard M., Morton R.J., Clinkenbeard K.D., Weinstock G.M. Chromosome rearrangement and diversification of Francisella tularensis revealed by the type B (OSU18) genome sequence. J. Bacteriol., 2006, vol. 188, no. 19, pp. 6977–6985. doi: 10.1128/JB.00506-06
  92. Phillips N.J., Schilling B., McLendon M.K., Apicella M.A., Gibson B.W. Novel modification of lipid A of Francisella tularensis. Infect. Immun., 2004, vol. 72, pp. 5340–5348. doi: 10.1128/IAI.72.9.5340-5348.2004
  93. Pilo P. Phylogenetic lineages of Francisella tularensis in animals. Front. Cell. Infect. Microbiol., 2018, vol. 8: 258. doi. 10.3389/fcimb.2018.00258
  94. Qin A., Mann B.J. Identification of transposon insertion mutants of Francisella tularensis tularensis strain SchuS4 deficient in intracellular replication in the hepatic cell line HepG2. BMC Microbiol., 2006, vol. 6: 69. doi: 10.1186/1471-2180-6-69
  95. Qin A., Scott D.W., Rabideau M.M., Moore E.A., Mann B.J. Requirement of the CXXC motif of novel Francisella infectivity potentiator protein B FipB, and FipA in virulence of F. tularensis subsp. tularensis. PLoS One, 2011, vol. 6: e24611. doi: 10.1371/journal.pone.0024611
  96. Qin A., Scott D.W., Thompson J.A., Mann B.J. Identification of an essential Francisella tularensis subsp. tularensis virulence factor. Infect. Immun., 2009, vol. 77, pp. 152–161. doi: 10.1128/IAI.01113-08
  97. Qin A., Zhang Y., Clark M.E., Rabideau M.M., MillanBarea L.R., Mann B.J. FipB, an essential virulence factor of Francisella tularensis subsp. tularensis, has dual roles in disulfide bond formation. J. Bacteriol., 2014, vol. 196, no. 20, pp. 3571–3581. doi: 10.1128/JB.01359-13
  98. Raetz C.R., Whitfield C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem., 2002, vol. 71, pp. 635–700. doi: 10.1146/annurev.biochem.71.110601.135414
  99. Raetz C.R., Guan Z., Ingram B.O., Six D.A., Song F., Wang X., Zhao J. Discovery of new biosynthetic pathways: the lipid A story. J. Lipid Res., 2009, vol. 50 (suppl.), pp. S103–S108. doi: 10.1194/jlr.R800060-JLR200
  100. Ramakrishnan G., Sen B., Johnson R. Paralogous outer membrane proteins mediate uptake of different forms of iron and synergistically govern virulence in Francisella tularensis tularensis. J. Biol. Chem., 2012, vol. 287, no. 30, pp. 25191–25202. doi: 10.1074/jbc.M112.371856
  101. Ramakrishnan G., Sen B. The FupA/B protein uniquely facilitates transport of ferrous iron and siderophore-associated ferric ironacross the outer membrane of Francisella tularensis live vaccine strain. Microbiology, 2014, vol. 160, pp. 446–457. doi: 10.1099/mic.0.072835-0
  102. Ravel J., Jiang L., Stanley S.T., Wilson M.R., Decker R.S., Read T.D., Worsham P., Keim P.S., Salzberg S.L., Fraser-Liggett C.M., Rasko D.A. The complete genome sequence of Bacillus anthracis Ames “Ancestor”. J. Bacteriol., 2009, vol. 191, no. 1, pp. 445–446. doi: 10.1128/JB.01347-08
  103. Rohmer L., Fong C., Abmayr S., Wasnick M., Freeman T.J.L., Radey M., Guina T., Svensson K., Hayden H.S., Jacobs M., Gallagher L.A., Manoil C., Ernst R.K., Drees B., Buckley D., Haugen E., Bovee D., Zhou Y., Chang J., Levy R., Lim R., Gillett W., Guenthener D., Kang A., Shaffer S.A., Taylor G., Chen J., Gallis B., D’Argenio D.A., Forsman M., Olson M.V., Goodlett D.R., Kaul R., Miller S.I., Brittnacheret M.J. Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol., 2007, vol. 8, no. 6: R102. doi: 10.1186/gb-2007-8-6-r102
  104. Rowe H.M., Huntley J.F. From the outside-in: the Francisella tularensis envelope and virulence. Front. Cell. Infect. Microbiol., 2015, vol. 5: 94. doi: 10.3389/fcimb.2015.00094
  105. Santic M., Ozanic M., Semic V., Pavokovic G., Mrvcic V., Kwaik Y.A. Intra-vacuolar proliferation of F. novicida within H. vermiformis. Front. Microbiol., 2011, vol. 2: 78. doi: 10.3389/fmicb.2011.00078
  106. Schmidt M., Klimentova J., Rehulka P., Straskova A., Spidlova P., Szotakova B., Stulik J., Pavkova I. Francisella tularensis subsp. holarctica DsbA homologue: a thioredoxin-like protein with chaperone function. Microbiology, 2013, vol. 159, pp. 2364–2374. doi: 10.1099/mic.0.070516-0
  107. Schmitt D.M., Barnes R., Rogerson T., Haught A., Mazzella L.K., Ford M., Gilson T., Birch J.W-M, Sjöstedt A., Reed D.S., Franks J.M., Stolz D.B., Denvir J., Fan J., Rekulapally S., Primerano D.A., Horzempa J. The role and mechanism of erythrocyte invasion by Francisella tularensis. Front. Cell. Infect. Microbiol., 2017, vol. 7: 173. doi: 10.3389/fcimb.2017.00173
  108. Schulert G.S., Allen L.A. Differential infection of mononuclear phagocytes by Francisella tularensis: role of the macrophage mannose receptor. J. Leukoc. Biol., 2006, vol. 80, pp. 563–571. doi: 10.1189/jlb.0306219
  109. Sen B., Meeker A., Ramakrishnan G. The fslE homolog, FTL_0439 (fupA/B), mediates siderophore-dependent iron uptakein Francisella tularensis LVS. Infect. Immun., 2010, vol. 78, no. 10, pp. 4276–4285. doi: 10.1128/IAI.00503-10
  110. Shibata K., Shimizu T., Nakahara M., Ito E., Legoux F., Fujii S., Yamada Y., Furutani-Seiki M., Lantz O., Yamasaki S., Watarai M., Shirai M. The intracellular pathogen Francisella tularensis escapes from adaptive immunity by metabolic adaptation. Life Sci. Alliance, 2022, vol. 5, no. 10: e202201441. doi: 10.26508/lsa.202201441
  111. Sjödin A., Svensson K., Öhrman C., Ahlinder J., Lindgren P., Duodu S., Johansson A., Colquhoun D.J., Larsson P., Forsman M. Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish. BMC Genomics, 2012, vol. 13: 268. doi: 10.1186/1471-2164-13-268
  112. Sjöstedt A.B. Francisella. In: The Proteobacteria, Part B., Bergey’s Manual of Systematic Bacteriology, 2005, Vol. 2, 2nd ed. Eds.: D.J. Brenner, J.T. Staley, G.M. Garrity. New York: Springer, pp. 200– 210.
  113. Sjöstedt A. Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Ann. NY Acad. Sci., 2007, vol. 1105, pp. 1–29. doi: 10.1196/annals.1409.009
  114. Soto S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence, 2013, vol. 4, no. 3, pp. 223–229. doi: 10.4161/viru.23724
  115. Su J., Yang J., Zhao D., Kawula T.H., Banas J.A., Zhang J.R. Genome-wide identification of Francisella tularensis virulence determinants. Infect. Immun., 2007, vol. 75, no. 6, pp,3089–3101. doi: 10.1128/IAI.01865-06
  116. Sutera V., Hoarau G., Renesto P., Caspar Y., Maurin M. In vitro and in vivo evaluation of fluoroquinolone resistance associated with DNA gyrase mutations in Francisella tularensis, including in tularaemia patients with treatment failure. Int. J. Antimicrob. Agents, 2017, vol. 50, no. 3, pp. 377–383. doi: 10.1016/j.ijantimicag.2017.03.022
  117. Sutera V., Levert M., Burmeister W.P., Schneider D., Maurin M. Evolution toward high-level fluoroquinolone resistance in Francisella species. J. Antimicrob. Chemother., 2014, vol. 69, no. 1, pp. 101–110. doi: 10.1093/jac/dkt321
  118. Svensson K., Bäck E., Eliasson H., Berglund L., Granberg M., Karlsson L., Larsson P., Forsman M., Johansson A. Landscape epidemiology of tularemia outbreaks in Sweden. Emerg. Infect. Dis., 2009, vol. 15, no. 12, pp. 1937–1947. doi: 10.3201/eid1512.090487
  119. Thakran S., Li H., Lavine C.L., Miller M.A., Bina J.E., Bina X.R., Re F. Identification of Francisella tularensis lipoproteins that stimulate the toll-like receptor (TLR)2/TLR1 heterodimer. J. Biol. Chem., 2008, vol. 283, no. 7, pp. 3751–3760. doi: 10.1074/jbc.M706854200
  120. Thelaus J., Andersson A., Broman T., Bäckman S., Granberg M., Karlsson L., Kuoppa K., Larsson E., Lundmark E., Lundström J.O., Mathisen P., Näslund J., Schäfer M., Wahab T., Forsman M. Francisella tularensis subspecies holarctica occurs in Swedish mosquitoes, persists through the developmental stages of laboratory-infected mosquitoes and is transmissible during blood feeding. Microb. Ecol., 2014, vol. 67, pp. 96–107. doi: 10.1007/s00248-013-0285-1
  121. Thelaus J., Andersson A., Mathisen P., Forslund A., Noppa L., Forsman M. Influence of nutrient status and grazing pressure on the fate of Francisella tularensis in lake water. FEMS Microbiol. Ecol., 2009, vol. 67, no. 1, pp. 69–80. doi: 10.1111/j.1574-6941.2008.00612.x
  122. Travis B.A., Ramsey K.M., Prezioso S.M., Tallo T., Wandzilak J.M., Hsu A., Borgnia M., Bartesaghi A., Dove S.L., Brennan R.G., Schumacher M.A. Structural basis for virulence activation of Francisella tularensis. Mol. Cell, 2021, vol. 81, no. 1, pp. 139–152.e10. doi: 10.1016/j.molcel.2020.10.035
  123. Trent M.S. Biosynthesis, transport, and modification of lipid A. Biochem. Cell. Biol., 2004, vol. 82, no. 1, pp. 71–86. doi: 10.1139/o03-070
  124. Van Hoek M.L. Biofilms: an advancement in our understanding of Francisella species. Virulence, 2013, vol. 4, pp. 833–846. doi: 10.4161/viru.27023
  125. Vinogradov E., Conlan W.J., Gunn J.S., Perry M.B. Characterization of the lipopolysaccharide O-antigen of Francisella novicida (U112). Carbohydr. Res., 2004, vol. 339, no. 3, pp. 649–654. doi: 10.1016/j.carres.2003.12.013
  126. Vinogradov E., Perry M.B. Characterization of the core part of the lipopolysaccharide O-antigen of Francisella novicida (U112). Carbohydr. Res., 2004, vol. 339, no. 9, pp. 1643–1648. doi: 10.1016/j.carres.2004.04.013
  127. Vinogradov E., Perry M.B., Conlan J.W. Structural analysis of Francisella tularensis lipopolysaccharide. Eur. J. Biochem., 2002, vol. 269, pp. 6112–6118. doi: 10.1046/j.1432-1033.2002.03321.x
  128. Vogler A.J., Birdsell D., Price L.B., Bowers J.R., Beckstrom-Sternberg S.M., Auerbach R.K., Beckstrom-Sternberg J.,S., Johansson A., Clare A., Buchhagen J.L., Petersen J.M., Pearson T., Vaissaire J., Dempsey M.P., Foxall P., Engelthaler D.M., Wagner D.M., Keim P. Phylogeography of Francisella tularensis: global expansion of a highly fit clone. J. Bacteriol., 2009, vol. 191, no. 8, pp. 2474–2484. doi: 10.1128/JB.01786-08
  129. Wang X., Ribeiro A.A., Guan Z., McGrath S.C., Cotter R.J., Raetz C.R. Structure and biosynthesis of free lipidA molecules that replace lipopolysaccharide in Francisella tularensis subsp. novicida. Biochemistry, 2006, vol. 45, no. 48, pp. 14427–14440. doi: 10.1021/bi061767s
  130. Wang Q., Shi X., Leymarie N., Madico G., Sharon J., Costello C.E., Zaia J. A typical preparation of Francisella tularensis O-antigen yields a mixture of three types of saccharides. Biochemistry, 2011, vol. 50, no. 50, pp. 10941–10950. doi: 10.1021/bi201450v
  131. Williamson D.R., Dewan K.K., Patel T., Wastella C.M., Ning G., Kirimanjeswara G.S. A single mechanosensitive channel protects Francisella tularensis subsp. holarctica from hypoosmotic shock and promotes survival in the aquatic environment. Appl. Environ. Microbiol., 2018, vol. 84, no. 5: e02203-17. doi: 10.1128/AEM.02203-17
  132. Zellner B. Huntley J.F. Ticks and Tularemia: do we know what we don’t know? Front. Cell. Infect. Microbiol., 2019, vol. 9: 146. doi: 10.3389/fcimb.2019.00146

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 2. Features of shell structure in F. tularensis subspecies pathogenic to humans and its role in virulence [104]

Download (255KB)
3. Figure 2. Features of shell structure in F. tularensis subspecies pathogenic to humans and its role in virulence [104]

Download (1MB)

Copyright (c) 2024 Kudryavtseva T.Y., Mokrievich A.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».