Strategies for tularemia pathogen survival, spread and virulence
- Authors: Kudryavtseva T.Y.1, Mokrievich A.N.1
-
Affiliations:
- State Research Center for Applied Biotechnology and Microbiology
- Issue: Vol 14, No 1 (2024)
- Pages: 9-23
- Section: REVIEWS
- URL: https://journal-vniispk.ru/2220-7619/article/view/256762
- DOI: https://doi.org/10.15789/2220-7619-SFT-17576
- ID: 256762
Cite item
Full Text
Abstract
The bacterium Francisella tularensis is the etiological agent of tularemia, a natural focal, especially dangerous infection, which, “thanks to” its low infectious dose and ability to be transmitted to humans via all possible routes, is a potential bioterrorism agent. This pathogen has been known to mankind for over a hundred years, but it is still impossible to prevent massive human disease outbreaks and sporadic incidence cases, whereas tularemia diagnosis may be verified within several days-to-weeks. The basis for tularemia causative agent virulence is based on its ability to disrupt phagocyte function. In animals and humans, the various Francisella tularensis systems work together to bypass host immune system, attach to and enter eukaryotic cells, block phagosome-lysosome fusion, multiply in various host cells without being detected, inhibit their destruction and cause host cell death to release bacteria and infect neighboring tissue cells, thus developing an infectious disease in different organs. This is achieved through a unique complement-dependent penetration process into host cell, called loop phagocytosis, and an unusual inert endotoxin as well as variation in diverse forms of “free” lipid A modifications and lipid A in the LPS composition, its dynamic acyl chain length regulation, and specifically combined regulatory factors to induce the “pathogenicity island” protein synthesis. Accumulated point mutations, intragenomic rearrangements, deletions, insertions, duplications, transpositions, gene degradation, variation in the number of copies in repeated DNA sequences, as well as homologous and non-homologous recombinations underlie a markedly expanded potential for existence of the tularemia causative agent: they contribute to the holarctic subspecies strain survival in varying conditions, including osmotic shock, to form multiple resistance to various toxic substances and alter F. tularensis subspecies virulence. Analyzing a whole body of publications on the abovementioned aspects for tularemia causative agent life activity attempts to combine the differences, structural features and “tricks” of the F. tularensis species cells allowing them to be a powerful pathogen, with a high potential to adapt upon low pathogen variability and a limited genome length compared with other specially dangerous bacteria.
Full Text
##article.viewOnOriginalSite##About the authors
Tamara Yu. Kudryavtseva
State Research Center for Applied Biotechnology and Microbiology
Email: mokrievich@obolensk.org
PhD (Biology), Senior Researcher, Department of Especially Dangerous Infections
Russian Federation, ObolenskAlexander N. Mokrievich
State Research Center for Applied Biotechnology and Microbiology
Author for correspondence.
Email: mokrievich@obolensk.org
PhD, MD (Medicine), Head of the Department of Especially Dangerous Infections
Russian Federation, ObolenskReferences
- Кудрявцева Т.Ю., Попов В.П., Мокриевич А.Н., Куликалова Е.С., Холин А.В., Мазепа А.В., Борзенко М.А., Пичурина Н.Л., Павлович Н.В., Носков А.К., Транквилевский Д.В., Храмов М.В., Дятлов И.А. Множественная лекарственная устойчивость клеток F. tularensis subsp. holarctica, анализ эпизоотологической и эпидемиологической ситуации по туляремии на территории Российской Федерации в 2022 г. и прогноз на 2023 г. // Проблемы особо опасных инфекций. 2023. № 1. С. 37–47. [Kudryavtseva T.Yu., Popov V.P., Mokrievich A.N., Kulikalova E.S., Kholin A.V., Mazepa A.V., Borzenko M.A., Pichurina N.L., Pavlovich N.V., Noskov A.K., Trankvilevsky D.V., Khramov M.V., Dyatlov I.A. Multidrug resistance of F. tularensis subsp. holarctica, epizootiological and epidemiological analysis of the situation on tularemia in the Russian Federation in 2022 and forecast for 2023. Problemy osobo opasnykh infektsiy = Problems of Particularly Dangerous Infections, 2023, no. 1, pp. 37–47. (In Russ.)] doi: 10.21055/0370-1069-2023-1-37-47
- Мирончук Ю.В., Мазепа А.В. Жизнеспособность и вирулентность Francisella tularensis subsp. holarctica в водных экосистемах (экспериментальное изучение) // Журнал микробиологии, эпидемиологии и иммунобиологии. 2002. № 2. С. 9–13. [Mironchuk Iu.V., Mazepa A.V. Viability and virulence of Francisella tularensis subsp. holarctica in water ecosystems (experimental study). Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2002, vol. 2, pp. 9–13. (In Russ.)]
- Олсуфьев Н.Г., Руднев Г.П. Туляремия. М.: Медицина, 1960. 459 c. [Olsuf’ev N.G., Rudnev G.P. Tularemia. Moscow: Meditsina, 1960. 459 p. (In Russ.)]
- Титов Л.П. Классификация, номенклатура и эволюция значимых для медицины бактерий // Медицинский журнал. 2006. № 1. С. 13–18. [Titov L.P. Classification, nomenclature and evolution of medically significant bacteria. Meditsinskiy zhurnal = Medical Journal, 2006, pp. 13–18. (In Russ.)]
- Abd H., Johansson T., Golovliov I., Sandstrom G., Forsman M. Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl. Environ. Microbiol, 2003, vol. 69, no. 1, pp. 600–606. doi: 10.1128/AEM.69.1.600-606.2003
- Abdellahoum Z., Maurin M., Bitam I. Tularemia as a mosquito-borne disease. Microorganisms, 2020, vol. 9: 26. doi: 10.3390/microorganisms9010026
- Ahmad S., Hunter L., Qin A., Mann B.J., van Hoek M.L. Azithromycin effectiveness against intracellular infections of Francisella. BMC Microbiol., 2010, vol. 10: 123. doi: 10.1186/1471-2180-10-123
- Alqahtani M., Ma Z., Ketkar H., Suresh R.V., Malik M., Bakshi C.S. Characterization of a unique outer membrane protein required for oxidative stress resistance and virulence of Francisella tularensis. J. Bacteriol. 2018, vol. 200, no. 8: e00693-17. doi: 10.1128/JB.00693-17
- Apicella M.A., Post D.M., Fowler A.C., Jones B.D., Rasmussen J.A., Hunt J.R., Imagawa S., Choudhury B., Inzana T.J., Maier T.M., Frank D.W., Zahrt T.C., Chaloner K., Jennings M.P., McLendon M.K., Gibson B.W. Identification, characterization and immunogenicity of an O-antigen capsular polysaccharide of Francisella tularensis. PLoS One, 2010, vol. 5, no. 7: e11060. doi: 10.1371/journal.pone.0011060
- Ariza-Miguel J., Johansson A., Fernández-Natal M.I., Martínez-Nistal C., Orduña A., Rodríguez-Ferri E.F., Hernández M., Rodríguez-Lázaro D. Molecular Investigation of tularemia outbreaks, Spain, 1997–2008. Emerg. Infect. Dis., 2014, vol. 20, no. 5, pp. 754–761. doi: 10.3201/eid2005.130654
- Bäckman S., Näslund J., Forsman M., Thelaus J. Transmission of tularemia from a water source by transstadial maintenance in a mosquito vector. Sci. Rep., 2015, vol. 5: 7793. doi: 10.1038/srep07793
- Bandara A.B., Champion A.E., Wang X., Berg G., Apicella M.A., McLendon M., Azadi P., Snyder D.S., Inzana T.J. Mutagenesis of a capsule-like complex (CLC) from Francisella tularensis, and contribution of the CLC to F. tularensis virulence in mice. PLoS One, 2011, vol. 6, no. 4: e19003. doi: 10.1371/journal.pone.0019003
- Barker J.H., Kaufman J.W., Zhang D.S., Weiss J.P. Metabolic labeling to characterize the overall composition of Francisella lipid A and LPS grown in broth and in human phagocytes. Innate Immun., 2014, no. 20, pp. 88–103. doi: 10.1177/1753425913485308
- Beckstrom-Sternberg S.M., Auerbach R.K., Godbole S., Pearson J.V., Beckstrom-Sternberg J.S., Deng Z., Munk C., Kubota K., Zhou Y., Bruce D., Noronha J., Scheuermann R.H., Wang A., Wei X., Wang J., J. Hao, Wagner D.M., Brettin T.S., Brown N., Gilna P., Keim P.S. Complete genomic characterization of a pathogenic A.II strain of Francisella tularensis subspecies tularensis. PLoS One, 2007, vol. 2, no. 9: e947. doi: 10.1371/journal.pone.0000947
- Biot F.V., Bachert B.A., Mlynek K.D., Toothman R.G., Koroleva G.I., Lovett S.P., Klimko C.P., Palacios G.F., Cote C.K., Ladner J.T., Bozue J.A. Evolution of antibiotic resistance in surrogates of Francisella tularensis (LVS and Francisella novicida): effects on biofilm formation and fitness. Front. Microbiol., 2020, vol. 11: 593542. doi: 10.3389/fmicb.2020.593542
- Biswas S., Raoult D., Rolain J.M. A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis. Int. J. Antimicrob. Agents, 2008, no. 32, pp. 207–220. doi: 10.1016/j. ijantimicag.2008.03.017
- Boisset S., Caspar Y., Sutera V., Maurin M. New therapeutic approaches for treatment of tularaemia: a review. Front. Cell. Infect. Microbiol., 2014, vol. 4: 40. doi: 10.3389/fcimb.2014.00040
- Bradford M.K., Elkins K.L. Immune lymphocytes halt replication of Francisella tularensis LVS within the cytoplasm of infected macrophages. Sci. Rep., 2020, vol. 10: 12023. doi: 10.1038/s41598-020-68798-2
- Broman T., Thelaus J., Andersson A.C., Bäckman S., Wikström P., Larsson E., Granberg M., Karlsson L., Bäck E., Eliasson H., Mattsson R., Sjöstedt A., Forsman M. Molecular detection of persistent Francisella tularensis subspecies holarctica in natural waters. Int. J. Microbiol., 2011: 851946. doi: 10.1155/2011/851946
- Brunet C.D., Hennebique A., Peyroux J., Pelloux I., Caspar Y., Maurin M. Presence of Francisella tularensis subsp. holarctica DNA in the aquatic environment in France. Microorganisms, 2021, vol. 9: 1398. doi: 10.3390/microorganisms9071398
- Brunet C.D., Peyroux J., Pondérand L., Bouillot S., Girard T., Faudry É., Maurin M., Caspar Y. Aquatic long-term persistence of Francisella tularensis ssp. holarctica is driven by water temperature and transition to a viable but non-culturable state. bioRxiv, 2022: 480867. doi: 10.1101/2022.02.18.480867
- Caspar Y., Maurin M. Francisella tularensis susceptibility to antibiotics: a comprehensive review of the data obtained in vitro and in animal models. Front. Cell. Infect. Microbiol., 2017, vol. 7: 122. doi: 10.3389/fcimb.2017. 00122
- Challacombe J.F., Pillai S., Kuske C.R. Shared features of crypticplasmids from environmental and pathogenic Francisella species. PLoS One, 2017, vol. 12: e0183554. doi: 10.1371/journal.pone.0183554
- Champion M.D., Zeng Q.D., Nix E.B., Nano F.E., Keim P., Kodira C.D., Borowsky M., Young S., Koehrsen M., Engels R., Pearson M., Howarth C., Larson L., White J., Alvarado L., Forsman M., Bearden S.W., Sjöstedt A., Titball R., Michell S.L., Birren B., Galagan J. Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies. PLoS Pathog., 2009, vol. 5, no. 5: e1000459. doi: 10.1371/journal.ppat.1000459
- Chen L.F., Kaye D. Current use for old antibacterial agents: polymyxins, rifamycins, and aminoglycosides. Med. Clin. North Am., 2011, no. 95, pp. 819–842. doi: 10.1016/j.mcna.2011.03.007
- Chin C.Y., Zhao J., Llewellyn A.C., Golovliov I., Sjöstedt A., Zhou P., Weiss D.S. Francisella FlmX broadly affects lipopolysaccharide modification and virulence. Cell Rep., 2021, vol. 35, no. 11: 109247. doi: 10.1016/j.celrep.2021.109247. PMID: 34133919
- Clemens D.L., Lee B.Y., Horwitz M.A. Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect. Immun., 2004, no. 72, pp. 3204–3217. doi: 10.1128/IAI.72.6.3204-3217.2004
- Clemens D.L., Lee B.Y., Horwitz M.A. Francisella tularensis enters macrophages via a novel process involving pseudopod loops. Infect. Immun., 2005, vol. 73, pp. 5892–5902. doi: 10.1128/IAI.73.9.5892-5902.2005
- Clemens D.L., Lee B.Y., Horwitz M.A. Francisella tularensis phagosomal Escape does not require acidification of the phagosome. Infect. Immun., 2009, vol. 77, pp. 1757–1773. doi: 10.1128/IAI.01485-08
- Clemens D.L., Lee B.Y., Horwitz M.A. O-antigen-deficient Francisella tularensis Live Vaccine Strain mutants are ingested via an aberrant form of looping phagocytosis and show altered kinetics of intracellular trafficking in human macrophages. Infect. Immun., 2012, vol. 80, pp. 952–967. doi: 10.1128/IAI.05221-11
- Cole L.E., Yang Y., Elkins K.L., Fernandez E.T., Qureshi N., Shlomchik M.J., Herzenberg L.A., Vogel S.N. Antigenspecific B-1a antibodies induced by Francisella tularensis LPS provide long-term protection against F. tularensis LVS challenge. Proc. Natl Acad. Sci. USA, 2009, vol. 106, no. 11, pp. 4343–4348. doi: 10.1073/pnas.0813411106
- Colquhoun D.J., Duodu S. Francisella infections in farmed and wild aquatic organisms. Vet. Res., 2011, vol. 42, no. 1: 47. doi: 10.1186/1297-9716-42-47
- Colquhoun D.J., Larsson P., Duodu S., Forsman M. The family Francisellaceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds). The Prokaryotes. Springer, Berlin, Heidelberg, 2014. doi. 10.1007/978-3-642-38922-1_236
- Conlan J.W., North R.J. Early pathogenesis of infection in the liver with the facultative intracellular bacteria Listeria monocytogenes, Francisella tularensis, and Salmonella typhimurium involves lysis of infected hepatocytes by leukocytes. Infect. Immun., 1992, vol. 60, pp. 5164–5171. doi: 10.1128/IAI.60.12.5164-5171
- Conlan J.W., Shen H., Webb A., Perry M.B. Mice vaccinated with the O antigen of Francisella tularensis LVS lipopolysaccharide conjugated to bovine serum albumin develop varying degrees of protective immunity against systemic or aerosol challenge with virulent type A and type B strains of the pathogen. Vaccine, 2002, vol. 20, pp. 3465–3471. doi: 10.1016/s0264-410x(02)00345-6
- Conlan J.W., Chen W., Shen H., Webb A., KuoLee R. Experimental tularemia in mice challenged by aerosol or intradermally with virulent strains of Francisella tularensis: bacteriologic and histopathologic studies. Microb. Pathog., 2003, vol. 34, no. 5, pp. 239–248. doi: 10.1016/s0882-4010(03)00046-9
- Cowley S.C. Editorial: Proinflammatory cytokines in pneumonic tularemia: too much too late? J. Leukoc. Biol., 2009, vol. 86, no. 3, pp. 469–470. doi: 10.1189/jlb.0309119
- Cowley S.C., Elkins K.L. Immunity to Francisella. Front. Microbiol., 2011, vol. 2: 26. doi: 10.3389/fmicb.2011.00026
- Dai S., Rajaram M.V., Curry H.M., Leander R., Schlesinger L.S. Fine tuning inflammation at the front door: macrophage complement receptor 3-mediates phagocytosis and immune suppression for Francisella tularensis. PLoS Pathog., 2013, vol. 9: e1003114. doi: 10.1371/journal.ppat.1003114
- DelVecchio V.G., Kapatral V., Elzer P., Patra G., Mujer C.V. The genome of Brucella melitensis. Vet. Microbiol., 2002, vol. 90, no. 1–4, pp. 587–592. doi: 10.1016/s0378-1135(02)00238-9
- Forslund A.L., KuoppaK., Svensson K., Salomonsson E., Johansson A., Byström M., Oyston P.C.F., Michell S.L., Titball R.W., Noppa L., Frithz-Lindsten E., Forsman M., Forsberg A. Direct repeat-mediated deletion of a type IV pilin gene results in major virulence attenuation of Francisella tularensis. Mol. Microbiol., 2006, vol. 59, no. 6, pp. 1818–1830. doi: 10.1111/j.1365-2958.2006.05061.x
- Forslund A.L., Salomonsson E.N., Golovliov I., Kuoppa K., Michell S., Titball R., Oyston P., Noppa L., Sjöstedt A., Forsberg A. The type IV pilin, PilA, is required for full virulence of Francisella tularensis subspecies tularensis. BMC Microbiol., 2010, vol. 10: 227. doi: 10.1186/1471-2180-10-227
- Forsman M., Henningson E.W., Larsson E., Johansson T., Sandström G. Francisella tularensis does not manifest virulence in viable but non-culturable state. FEMS Microbiol. Ecol., 2000, vol. 31, no. 3, pp. 217–224. doi: 10.1111/j.1574-6941.2000.tb00686.x
- Fritz D.L., England M.J., Miller L., Waag D.M. Mouse models of aerosol-acquired tularemia caused by Francisella tularensis types A and B. Comp. Med., 2014, vol. 64, no. 5, pp. 341–350.
- Geier H., Celli J. Phagocytic receptors dictate phagosomal escape and intracellular proliferation of Francisella tularensis. Infect. Immun., 2011, vol. 79, pp. 2204–2214. doi: 10.1128/IAI.01382-10
- Gentry M., Taormina J., Pyles R.B., Yeager L., Kirtley M., Popov V.L., Klimpel G., Eaves-Pyles T. Role of primary human alveolar epithelial cells in host defense against Francisella tularensis infection. Infect. Immun., 2007, vol. 75, no. 8, pp. 3969–3978. doi: 10.1128/IAI.00157-07
- Gil H., Platz G.J., Forestal C.A., Monfett M., Bakshi C.S., Sellati T.J., Furie M.B., Benach J.L., Thanassi D.G. Deletion of TolC orthologs in Francisella tularensis identifies roles in multidrug resistance and virulence. Proc. Natl Acad. Sci. USA, 2006, vol. 103, no. 34, pp. 12897–12902. doi: 10.1073/pnas.0602582103
- Girgis H.S., Hottes A.K., Tavazoie S. Genetic architecture of intrinsic antibiotic susceptibility. PLoS One, 2009, vol. 4, no. 5: e5629. doi: 10.1371/journal.pone.0005629
- Golovliov I., Baranov V., Krocova Z., Kovarova H., Sjostedt A. An аttenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect. Immun., 2003, vol. 71, pp. 5940–5950. doi: 10.1128/IAI.71.10.5940-5950.2003
- Golovliov I., Bäckman S., Granberg M., Salomonsson E., Lundmark E., Näslund J., Busch J.D., Birdsell D., Sahl J.W., Wagner D.M., Johansson A., Forsman M., Thelaus J. Long-termsurvival of virulent tularemia pathogens outside a host in conditions that mimic natural aquatic environments. Appl. Environ. Microbiol., 2021, vol. 87: e02713-20. doi: 10.1128/AEM .02713-20
- Gunn J.S., Ernst R.K. The structure and function of Francisella lipopolysaccharide. Ann. NY Acad. Sci., 2007, no. 1105, pp. 202–218. doi: 10.1196/annals.1409.006
- Gunnell M.K., Adams B.J., Robison R.A. The genetic diversity and evolution of Francisella tularensis with comments on detection by PCR. Curr. Issues Mol. Biol., 2016, vol. 18, no. 1, pp. 79–91. doi: 10.21775/cimb.018.079
- Hennebique A., Boisset S., Maurin M. Tularemia as a waterborne disease: a review. Emerg. Microbes Infect., 2019, vol. 8, no. 1, pp. 1027–1042, doi: 10.1080/22221751.2019.1638734
- Hopla C.E. The ecology of tularemia. Adv. Vet. Sci. Comp. Med., 1974, vol. 18, pp. 25–53.
- Jackson J., McGregor A., Cooley L., Ng J., Brown M., Ong C.W., Darcy C., Sintchenko V. Francisella tularensis subspecies holarctica, Tasmania, Australia, 2011. Emerg. Infect. Dis., 2012, vol. 18, no. 9, pp. 1484–1486. doi: 10.3201/eid1809.111856
- Jia Q., Lee B.Y., Bowen R., Dillon B.J., Som S.M., Horwitz M.A. A Francisella tularensis live vaccine strain (LVS) mutant with a deletion in capB, encoding a putative capsular biosynthesis protein, is significantly more attenuated than LVS yet induces potent protective immunity in mice against F. tularensis challenge. Infect. Immun., 2010, vol. 78, pp. 4341–4355. doi: 10.1128/IAI.00192-10
- Jia Q., Horwitz M.A. Live attenuated tularemia vaccines for protection against respiratory challenge with virulent F. tularensis subsp. tularensis. Front. Cell. Infect. Microbiol., 2018, vol. 8: 154. doi: 10.3389/fcimb.2018.00154
- Jones B.D., Faron M., Rasmussen J.A. Fletcher J.R. Uncovering the components of the Francisella tularensis virulence stealth strategy. Front. Cell. Infect. Microbiol., 2014, vol. 4: 32. doi: 10.3389/fcimb.2014.00032
- Jones C.L., Napier B.A., Sampson T.R., Llewellyn A.C., Schroeder M.R., Weiss D.S. Subversion of host recognition and defense systems by Francisella spp. Microbiol. Mol. Biol. Rev., 2012, vol. 76, no. 2, pp. 383–404. doi: 10.1128/MMBR.05027-11
- Karlsson E., Golovliov I., Lärkeryd A., Granberg M., Larsson E., Öhrman C., Niemcewicz M., Birdsell D., Wagner D.M., Forsman M., Johansson A. Clonality of erythromycin resistance in Francisella tularensis. J. Antimicrob. Chemother., 2016, vol. 71, pp. 2815–2823. doi: 10.1093/jac/dkw235
- Kassinger S.J., van Hoek M.L. Genetic determinants of antibiotic resistance in Francisella. Front. Microbiol., 2021, vol. 12: 644855. doi: 10.3389/fmicb.2021.644855
- Kingry L.C., Petersen J.M. Comparative review of Francisella tularensis and Francisella novicida. Front. Cell. Infect. Microbiol., 2014, vol. 4: 35. doi: 10.3389/fcimb.2014.00035
- Kopping E.J., Doyle C.R., Sampath V., Thanassi D.G. Contributions of TolC orthologs to Francisella tularensis Schu S4 multidrug resistance, modulation of host cell responses, and virulence. Infect. Immun., 2019, vol. 87: e00823-18. doi: 10.1128/IAI.00823-18
- Kubelkova K., Macela A. Francisella and antibodies. Microorganisms, 2021, vol. 9, no. 10: 2136. doi: 10.3390/microorganisms9102136
- Kubelkova K., Hudcovic T., Kozakova H., Pejchal J.,, Macela A. Early infection-induced natural antibody response. Sci. Rep., 2021, vol. 11, no. 1: 1541. doi: 10.1038/s41598-021-81083-0
- Kugeler K.J., Mead P.S., Janusz A.M., Staples J.E., Kubota K.A., Chalcraft L.G., Petersen J.M. Molecular epidemiology of Francisella tularensis in the United States. Clin. Infect. Dis., 2009, vol. 48, no. 7, pp. 863–870. doi: 10.1086/597261
- Kumar R., Bröms J.E., Sjöstedt A. Exploring the diversity within the genus Francisella — an integrated pan-genome and genome-mining approach. Front. Microbiol., 2020, vol. 11: 1928. doi: 10.3389/fmicb.2020.01928
- Lai X.H., Shirley R.L., Crosa L., Kanistanon D., Tempel R., Ernst R.K., Gallagher L.A., Manoil C., Heffron F. Mutations of Francisella novicida that alter the mechanism of its phagocytosis by murine macrophages. PLoS One, 2010, vol. 5, no. 7: e11857. doi: 10.1371/journal.pone.0011857
- Larsson P., Elfsmark D., Svensson K., Wikström P., Forsman M., Brettin T., Keim P., Johansson A. Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen. PLoS Pathog., 2009, vol. 5, no. 6: e1000472. doi: 10.1371/journal.ppat.1000472
- Lewisch E., Menanteau-Ledouble S., Tichy A., El-Matbouli M. Susceptibility of common carp and sunfish to a strain of Francisella noatunensis subsp. orientalis in a challenge experiment. Dis. Aquat. Organ., 2016, vol. 121, no. 2, pp. 161–166. doi: 10.3354/dao03044
- Li Y., Powell D.A., Shaffer S.A., Rasko D.A., Pelletier M.R., Leszyk J.D., Scott A.J., Masoudi A., Goodlett D.R., Wang X., Raetz C.R.H., Ernst R.K. LPS remodeling is an evolved survival strategy for bacteria. Proc. Natl Acad. Sci. USA, 2012, vol. 109, no. 22, pp. 8716–8721. doi: 10.1073/pnas.1202908109
- Lindemann S.R., McLendon M.K., Apicella M.A., Jones B.D. An in vitro model system used to study adherence and invasion of Francisella tularensis live vaccines training nonphagocytic cells. Infect.Immun., 2007, vol. 75, pp. 3178–3182. doi: 10.1128/IAI.01811-06
- Lundstrom J.O., Andersson A.C., Backman S., Schafer M.L., Forsman M., Thelaus J. Transstadial transmission of Francisella tularensis holarctica in mosquitoes, Sweden. Emerg. Infect. Dis., 2011, vol. 17, no. 5, pp. 794–799. doi: 10.3201/eid1705.100426
- Ma Z., Banik S., Rane H., Mora V.T., Rabadi S.M., Doyle C.R., Thanassi D.G., Bakshi C.S., Malik M. EmrA1 membrane fusion protein of Francisella tularensis LVS is required for resistance to oxidative stress, intramacrophage survival and virulence in mice. Mol. Microbiol., 2014, vol. 91, no. 5, pp. 976–995. doi: 10.1111/mmi.12509
- Mahawar M., Atianand M.K., Dotson R.J., Mora,V., Rabadi S.M., Metzger D.W., Huntley J.F., Harton J.A., Malik M., Bakshi C.S. Identification of a novel Francisella tularensis factor required for intramacrophage surviva land subversion of innate immune response. J. Biol. Chem., 2012, vol. 287, no. 30, pp. 25216–25229. doi: 10.1074/jbc.M112.367672
- Martin-Garcia J.M., Hansen D.T., Zook J., Loskutov A.V., Robida M.D., Craciunescu F.M., Sykes K.F., Wachter R.M., Fromme P., Allen J.P. Purification and biophysical characterization of the CapA membrane protein FTT0807 from Francisella tularensis. Biochemistry, 2014, vol. 53, no. 12, pp. 1958–1970. doi: 10.1021/bi401644s
- Martinez J.L. General principles of antibiotic resistance in bacteria. Drug Discov. Today Technol., 2014, vol. 11, pp. 33–39. doi: 10.1016/j.ddtec.2014.02.001
- McCaffrey R.L., Allen L.A. Francisella tularensis LVS evades killing by human neutrophils via inhibition of the respiratory burst and phagosome escape. J. Leukoc. Biol., 2006, vol. 80, pp. 1224–1230. doi: 10.1189/jlb.0406287
- Melillo A., Sledjeski D.D., Lipski S., Wooten R.M., Basrur V., Lafontaine E.R. Identification of a Francisella tularensis LVS outer membrane protein that confers adherence to A549 human lung cells. FEMS Microbiol. Lett., 2006, vol. 263, pp. 102–108. doi: 10.1111/j.1574-6968.2006.00413.x
- Michell S.L., Dean R.E., Eyles J.E., Hartley M.G., Waters E., Prior J.L., Titball R.W., Oyston P.С.F. Deletion of the Bacillus anthracis capB homologue in Francisella tularensis subspecies tularensis generates an attenuated strain that protects mice against virulent tularaemia. J. Med. Microbiol., 2010, vol. 59, pp. 1275–1284. doi: 10.1099/jmm.0.018911-0
- Moreland J.G., Hook J.S., Bailey G., Ulland T., Nauseef W.M. Francisella tularensis directly interacts with the endothelium and recruits neutrophils with a blunted inflammatory phenotype. Am. J. Physiol. Lung Cell. Mol. Physiol., 2009, vol. 296, no. 6, pp. L1076–L1084. doi: 10.1152/ajplung.90332.2008
- Mörner T. The ecology of tularaemia. Rev. Sci. Tech., 1992, vol. 11, no. 4, pp. 1123–1130.
- Nano F.E., Zhang N., Cowley S.C., Klose K.E., Cheung K.K., Roberts M.J., Ludu J.S., Letendre G.W., Meierovics A.I., Stephens G., Elkins K.L. A Francisella tularensis pathogenicity island required for intramacrophage growth. J. Bacteriol., 2004, vol. 186, no. 19, pp. 6430–6436. doi: 10.1128/JB.186.19.6430-6436.2004
- Nano F.E., Schmerk C. The Francisella pathogenicity island. Ann. NY Acad. Sci., 2007, vol. 1105, pp. 122–137. doi: 10.1196/annals.1409.000
- Öhrman C., Sahl J.W., Sjödin A., Uneklint I., Ballard R., Karlsson L., McDonough R.F., Sundell D., Soria K., Bäckman S., Chase K., Brindefalk B., Sozhamannan S., Vallesi A., Hägglund E., Ramirez-Paredes J.G., Thelaus J., Colquhoun D., Myrtennäs K., Birdsell D., Johansson A., Wagner D.M., Forsman M. Reorganized genomic taxonomy of Francisellaceae enables design of robust environmental PCR assays for detection of Francisella tularensis. Microorganisms, 2021, vol. 9, no. 1: 146. doi: 10.3390/microorganisms9010146
- Okan N.A., Kasper D.L. The atypical lipopolysaccharide of Francisella. Carbohydr. Res., 2013, vol. 378, pp. 79–83. doi: 10.1016/j.carres.2013.06.015
- Ozanic M., Marecic V., Kwaik Y.A., Santic M. The divergent intracellular lifestyle of Francisella tularensis in evolutionarily distinct host cells. PLoS Pathog., 2015, vol. 11, no. 12: e1005208. doi: 10.1371/journal.ppat.1005208
- Parkhill J., Wren B.W., Thomson N.R., Titball R.W., Holden M.T., Prentice M.B., Sebaihia M., James K.D., Churcher C., Mungall K.L., Baker S., Basham D., Bentley S.D., Brooks K., Cerdeño-Tárraga A.M., Chillingworth T., Cronin A., Davies R.M., Davis P., Dougan G., Feltwell T., Hamlin N., Holroyd S., Jagels K., Karlyshev A.V., Leather S., Moule S., Oyston P.C., Quail M., Rutherford K., Simmonds M., Skelton J., Stevens K., Whitehead S., Barrell B.G. Genome sequence of Yersinia pestis, the causative agent of plague. Nature, 2001, vol. 413, no. 6855, pp. 523–527. doi: 10.1038/35097083
- Parra M.C., Shaffer S.A., Hajjar A.M., Gallis B.M., Hager A., Goodlett D.R., Guina T., Miller S., Collins C.M. Identification, cloning, expression, and purification of Francisella lpp3: an immunogenic lipoprotein. Microbiol. Res., 2010, vol. 165, no. 7, pp. 531–545. doi: 10.1016/j.micres.2009.11.004
- Perez-Castrillon J.L., Bachiller-Luque P., Martin-Luquero M., Mena-Martin F.J., Herreros V. Tularemia epidemic in northwestern Spain: clinical description and therapeutic response. Clin. Infect. Dis., 2001, vol. 33, pp. 573–576. doi: 10.1086/322601
- Petrosino J.F., Xiang Q., Karpathy S.E., Jiang H.Y., Yerrapragada S., Liu Y.M., Gioia J., Hemphill L., Gonzalez A., Raghavan T.M., Uzman A., Fox G.E., Highlander S., Reichard M., Morton R.J., Clinkenbeard K.D., Weinstock G.M. Chromosome rearrangement and diversification of Francisella tularensis revealed by the type B (OSU18) genome sequence. J. Bacteriol., 2006, vol. 188, no. 19, pp. 6977–6985. doi: 10.1128/JB.00506-06
- Phillips N.J., Schilling B., McLendon M.K., Apicella M.A., Gibson B.W. Novel modification of lipid A of Francisella tularensis. Infect. Immun., 2004, vol. 72, pp. 5340–5348. doi: 10.1128/IAI.72.9.5340-5348.2004
- Pilo P. Phylogenetic lineages of Francisella tularensis in animals. Front. Cell. Infect. Microbiol., 2018, vol. 8: 258. doi. 10.3389/fcimb.2018.00258
- Qin A., Mann B.J. Identification of transposon insertion mutants of Francisella tularensis tularensis strain SchuS4 deficient in intracellular replication in the hepatic cell line HepG2. BMC Microbiol., 2006, vol. 6: 69. doi: 10.1186/1471-2180-6-69
- Qin A., Scott D.W., Rabideau M.M., Moore E.A., Mann B.J. Requirement of the CXXC motif of novel Francisella infectivity potentiator protein B FipB, and FipA in virulence of F. tularensis subsp. tularensis. PLoS One, 2011, vol. 6: e24611. doi: 10.1371/journal.pone.0024611
- Qin A., Scott D.W., Thompson J.A., Mann B.J. Identification of an essential Francisella tularensis subsp. tularensis virulence factor. Infect. Immun., 2009, vol. 77, pp. 152–161. doi: 10.1128/IAI.01113-08
- Qin A., Zhang Y., Clark M.E., Rabideau M.M., MillanBarea L.R., Mann B.J. FipB, an essential virulence factor of Francisella tularensis subsp. tularensis, has dual roles in disulfide bond formation. J. Bacteriol., 2014, vol. 196, no. 20, pp. 3571–3581. doi: 10.1128/JB.01359-13
- Raetz C.R., Whitfield C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem., 2002, vol. 71, pp. 635–700. doi: 10.1146/annurev.biochem.71.110601.135414
- Raetz C.R., Guan Z., Ingram B.O., Six D.A., Song F., Wang X., Zhao J. Discovery of new biosynthetic pathways: the lipid A story. J. Lipid Res., 2009, vol. 50 (suppl.), pp. S103–S108. doi: 10.1194/jlr.R800060-JLR200
- Ramakrishnan G., Sen B., Johnson R. Paralogous outer membrane proteins mediate uptake of different forms of iron and synergistically govern virulence in Francisella tularensis tularensis. J. Biol. Chem., 2012, vol. 287, no. 30, pp. 25191–25202. doi: 10.1074/jbc.M112.371856
- Ramakrishnan G., Sen B. The FupA/B protein uniquely facilitates transport of ferrous iron and siderophore-associated ferric ironacross the outer membrane of Francisella tularensis live vaccine strain. Microbiology, 2014, vol. 160, pp. 446–457. doi: 10.1099/mic.0.072835-0
- Ravel J., Jiang L., Stanley S.T., Wilson M.R., Decker R.S., Read T.D., Worsham P., Keim P.S., Salzberg S.L., Fraser-Liggett C.M., Rasko D.A. The complete genome sequence of Bacillus anthracis Ames “Ancestor”. J. Bacteriol., 2009, vol. 191, no. 1, pp. 445–446. doi: 10.1128/JB.01347-08
- Rohmer L., Fong C., Abmayr S., Wasnick M., Freeman T.J.L., Radey M., Guina T., Svensson K., Hayden H.S., Jacobs M., Gallagher L.A., Manoil C., Ernst R.K., Drees B., Buckley D., Haugen E., Bovee D., Zhou Y., Chang J., Levy R., Lim R., Gillett W., Guenthener D., Kang A., Shaffer S.A., Taylor G., Chen J., Gallis B., D’Argenio D.A., Forsman M., Olson M.V., Goodlett D.R., Kaul R., Miller S.I., Brittnacheret M.J. Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol., 2007, vol. 8, no. 6: R102. doi: 10.1186/gb-2007-8-6-r102
- Rowe H.M., Huntley J.F. From the outside-in: the Francisella tularensis envelope and virulence. Front. Cell. Infect. Microbiol., 2015, vol. 5: 94. doi: 10.3389/fcimb.2015.00094
- Santic M., Ozanic M., Semic V., Pavokovic G., Mrvcic V., Kwaik Y.A. Intra-vacuolar proliferation of F. novicida within H. vermiformis. Front. Microbiol., 2011, vol. 2: 78. doi: 10.3389/fmicb.2011.00078
- Schmidt M., Klimentova J., Rehulka P., Straskova A., Spidlova P., Szotakova B., Stulik J., Pavkova I. Francisella tularensis subsp. holarctica DsbA homologue: a thioredoxin-like protein with chaperone function. Microbiology, 2013, vol. 159, pp. 2364–2374. doi: 10.1099/mic.0.070516-0
- Schmitt D.M., Barnes R., Rogerson T., Haught A., Mazzella L.K., Ford M., Gilson T., Birch J.W-M, Sjöstedt A., Reed D.S., Franks J.M., Stolz D.B., Denvir J., Fan J., Rekulapally S., Primerano D.A., Horzempa J. The role and mechanism of erythrocyte invasion by Francisella tularensis. Front. Cell. Infect. Microbiol., 2017, vol. 7: 173. doi: 10.3389/fcimb.2017.00173
- Schulert G.S., Allen L.A. Differential infection of mononuclear phagocytes by Francisella tularensis: role of the macrophage mannose receptor. J. Leukoc. Biol., 2006, vol. 80, pp. 563–571. doi: 10.1189/jlb.0306219
- Sen B., Meeker A., Ramakrishnan G. The fslE homolog, FTL_0439 (fupA/B), mediates siderophore-dependent iron uptakein Francisella tularensis LVS. Infect. Immun., 2010, vol. 78, no. 10, pp. 4276–4285. doi: 10.1128/IAI.00503-10
- Shibata K., Shimizu T., Nakahara M., Ito E., Legoux F., Fujii S., Yamada Y., Furutani-Seiki M., Lantz O., Yamasaki S., Watarai M., Shirai M. The intracellular pathogen Francisella tularensis escapes from adaptive immunity by metabolic adaptation. Life Sci. Alliance, 2022, vol. 5, no. 10: e202201441. doi: 10.26508/lsa.202201441
- Sjödin A., Svensson K., Öhrman C., Ahlinder J., Lindgren P., Duodu S., Johansson A., Colquhoun D.J., Larsson P., Forsman M. Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish. BMC Genomics, 2012, vol. 13: 268. doi: 10.1186/1471-2164-13-268
- Sjöstedt A.B. Francisella. In: The Proteobacteria, Part B., Bergey’s Manual of Systematic Bacteriology, 2005, Vol. 2, 2nd ed. Eds.: D.J. Brenner, J.T. Staley, G.M. Garrity. New York: Springer, pp. 200– 210.
- Sjöstedt A. Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Ann. NY Acad. Sci., 2007, vol. 1105, pp. 1–29. doi: 10.1196/annals.1409.009
- Soto S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence, 2013, vol. 4, no. 3, pp. 223–229. doi: 10.4161/viru.23724
- Su J., Yang J., Zhao D., Kawula T.H., Banas J.A., Zhang J.R. Genome-wide identification of Francisella tularensis virulence determinants. Infect. Immun., 2007, vol. 75, no. 6, pp,3089–3101. doi: 10.1128/IAI.01865-06
- Sutera V., Hoarau G., Renesto P., Caspar Y., Maurin M. In vitro and in vivo evaluation of fluoroquinolone resistance associated with DNA gyrase mutations in Francisella tularensis, including in tularaemia patients with treatment failure. Int. J. Antimicrob. Agents, 2017, vol. 50, no. 3, pp. 377–383. doi: 10.1016/j.ijantimicag.2017.03.022
- Sutera V., Levert M., Burmeister W.P., Schneider D., Maurin M. Evolution toward high-level fluoroquinolone resistance in Francisella species. J. Antimicrob. Chemother., 2014, vol. 69, no. 1, pp. 101–110. doi: 10.1093/jac/dkt321
- Svensson K., Bäck E., Eliasson H., Berglund L., Granberg M., Karlsson L., Larsson P., Forsman M., Johansson A. Landscape epidemiology of tularemia outbreaks in Sweden. Emerg. Infect. Dis., 2009, vol. 15, no. 12, pp. 1937–1947. doi: 10.3201/eid1512.090487
- Thakran S., Li H., Lavine C.L., Miller M.A., Bina J.E., Bina X.R., Re F. Identification of Francisella tularensis lipoproteins that stimulate the toll-like receptor (TLR)2/TLR1 heterodimer. J. Biol. Chem., 2008, vol. 283, no. 7, pp. 3751–3760. doi: 10.1074/jbc.M706854200
- Thelaus J., Andersson A., Broman T., Bäckman S., Granberg M., Karlsson L., Kuoppa K., Larsson E., Lundmark E., Lundström J.O., Mathisen P., Näslund J., Schäfer M., Wahab T., Forsman M. Francisella tularensis subspecies holarctica occurs in Swedish mosquitoes, persists through the developmental stages of laboratory-infected mosquitoes and is transmissible during blood feeding. Microb. Ecol., 2014, vol. 67, pp. 96–107. doi: 10.1007/s00248-013-0285-1
- Thelaus J., Andersson A., Mathisen P., Forslund A., Noppa L., Forsman M. Influence of nutrient status and grazing pressure on the fate of Francisella tularensis in lake water. FEMS Microbiol. Ecol., 2009, vol. 67, no. 1, pp. 69–80. doi: 10.1111/j.1574-6941.2008.00612.x
- Travis B.A., Ramsey K.M., Prezioso S.M., Tallo T., Wandzilak J.M., Hsu A., Borgnia M., Bartesaghi A., Dove S.L., Brennan R.G., Schumacher M.A. Structural basis for virulence activation of Francisella tularensis. Mol. Cell, 2021, vol. 81, no. 1, pp. 139–152.e10. doi: 10.1016/j.molcel.2020.10.035
- Trent M.S. Biosynthesis, transport, and modification of lipid A. Biochem. Cell. Biol., 2004, vol. 82, no. 1, pp. 71–86. doi: 10.1139/o03-070
- Van Hoek M.L. Biofilms: an advancement in our understanding of Francisella species. Virulence, 2013, vol. 4, pp. 833–846. doi: 10.4161/viru.27023
- Vinogradov E., Conlan W.J., Gunn J.S., Perry M.B. Characterization of the lipopolysaccharide O-antigen of Francisella novicida (U112). Carbohydr. Res., 2004, vol. 339, no. 3, pp. 649–654. doi: 10.1016/j.carres.2003.12.013
- Vinogradov E., Perry M.B. Characterization of the core part of the lipopolysaccharide O-antigen of Francisella novicida (U112). Carbohydr. Res., 2004, vol. 339, no. 9, pp. 1643–1648. doi: 10.1016/j.carres.2004.04.013
- Vinogradov E., Perry M.B., Conlan J.W. Structural analysis of Francisella tularensis lipopolysaccharide. Eur. J. Biochem., 2002, vol. 269, pp. 6112–6118. doi: 10.1046/j.1432-1033.2002.03321.x
- Vogler A.J., Birdsell D., Price L.B., Bowers J.R., Beckstrom-Sternberg S.M., Auerbach R.K., Beckstrom-Sternberg J.,S., Johansson A., Clare A., Buchhagen J.L., Petersen J.M., Pearson T., Vaissaire J., Dempsey M.P., Foxall P., Engelthaler D.M., Wagner D.M., Keim P. Phylogeography of Francisella tularensis: global expansion of a highly fit clone. J. Bacteriol., 2009, vol. 191, no. 8, pp. 2474–2484. doi: 10.1128/JB.01786-08
- Wang X., Ribeiro A.A., Guan Z., McGrath S.C., Cotter R.J., Raetz C.R. Structure and biosynthesis of free lipidA molecules that replace lipopolysaccharide in Francisella tularensis subsp. novicida. Biochemistry, 2006, vol. 45, no. 48, pp. 14427–14440. doi: 10.1021/bi061767s
- Wang Q., Shi X., Leymarie N., Madico G., Sharon J., Costello C.E., Zaia J. A typical preparation of Francisella tularensis O-antigen yields a mixture of three types of saccharides. Biochemistry, 2011, vol. 50, no. 50, pp. 10941–10950. doi: 10.1021/bi201450v
- Williamson D.R., Dewan K.K., Patel T., Wastella C.M., Ning G., Kirimanjeswara G.S. A single mechanosensitive channel protects Francisella tularensis subsp. holarctica from hypoosmotic shock and promotes survival in the aquatic environment. Appl. Environ. Microbiol., 2018, vol. 84, no. 5: e02203-17. doi: 10.1128/AEM.02203-17
- Zellner B. Huntley J.F. Ticks and Tularemia: do we know what we don’t know? Front. Cell. Infect. Microbiol., 2019, vol. 9: 146. doi: 10.3389/fcimb.2019.00146
Supplementary files
