Investigating SARS-CoV-2 virion material trafficking in syrian hamster neocortecal neurons
- 作者: Chepur S.V.1, Paramonova N.M.1,2, Myasnikova I.A.1, Pluzhnikov N.N.1, Tyunin M.A.1, Kanevsky B.A.1, Ilyinsky N.S.1
-
隶属关系:
- State Scientific-Research Test Institute of Military Medicine of Defense Ministry of the Russian Federation
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
- 期: 卷 14, 编号 1 (2024)
- 页面: 24-34
- 栏目: ORIGINAL ARTICLES
- URL: https://journal-vniispk.ru/2220-7619/article/view/256763
- DOI: https://doi.org/10.15789/2220-7619-ISV-16270
- ID: 256763
如何引用文章
全文:
详细
Introduction. Taking into account the experience on the new coronavirus infection COVID-19 pandemic, the relevance of studies assessing the cellular processes of SARS-CoV-2 virus assembly and transport to justify the choice of pharmacological action points has now markedly increased. The study was aimed at analyzing morphologically assessed events of SARS-CoV-2 life cycle in neocortical neurons using electron microscopy based on its traced wide prevalence in vivo and ability to penetrate the blood-brain barrier accounts.
Materials and methods. Patient-derived SARS-CoV-2 virus was obtained and accumulated in Vero(B) cell culture. An electron microscopy study (EMR) of the viral particle transport was carried out in male Syrian hamsters. Animals were inoculated intranasally with 26 μl of virus culture in an amount of 4 × 104 TCID50/ml. Animals were euthanized on day 3, 7, and 28 post-infection. The extracted brain was prepared for EMR according to methods previously described in the literature. The results were recorded using an FEI Tecnai G2 Spitit BioTWIN electron microscope.
Results. Using EMR, the morphological equivalents of virus transport variants in neocortical neurons were traced dynamically during infectious process in Syrian hamsters. After synthesis, viral membrane proteins are included in transport vesicles in the endoplasmic reticulum (ER) terminal tubules and enter the intermediate compartment (IC), a collection of smooth-walled membrane vesicles between the endoplasmic reticulum (ER) and the Golgi apparatus (AG). In the first 3 days post-infection, viral copies are included in the Ag in PC membrane-formed transport vesicles. Due to the large size, viral particles are restricted to the expanded ends of the mobile AG tanks. Morphologically, destruction of AG membranes was revealed on day 7 post-infection, which indicates an interaction between PC vesicles and preserved AG membrane elements or the implementation of their independent transport function to deliver SARS-CoV-2 virus to the cell periphery and further into the intercellular space. In the neuronal processes, the transport of mature SARS-CoV-2 viral particles associated with cytoskeletal elements was observed, which was not detected in other loci of virus persistence.
Conclusion. Based on data obtained, it is possible to hypothesize about a cumulative importance for progression and persistence of SARS-CoV-2 infection in cortical neurons. Early signs of neuron infection are represented by characteristic changes in the nuclei, ER hypertrophy and formation of “viral factories” based on the ER, PC and AG. The formation of viral biomass occurs inside neurons; virion exit from target cells is more accompanied by cell death rather than if a virus becomes incorporated in the lysosomal-endosomal system.
作者简介
S. Chepur
State Scientific-Research Test Institute of Military Medicine of Defense Ministry of the Russian Federation
Email: ropsha.home@rambler.ru
DSc (Medicine), Professor, Head
俄罗斯联邦, St. PetersburgN. Paramonova
State Scientific-Research Test Institute of Military Medicine of Defense Ministry of the Russian Federation; Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: ropsha.home@rambler.ru
Senior Researcher, Researcher
俄罗斯联邦, St. Petersburg; St. PetersburgI. Myasnikova
State Scientific-Research Test Institute of Military Medicine of Defense Ministry of the Russian Federation
编辑信件的主要联系方式.
Email: ropsha.home@rambler.ru
PhD (Biology), Senior Researcher
俄罗斯联邦, St. PetersburgN. Pluzhnikov
State Scientific-Research Test Institute of Military Medicine of Defense Ministry of the Russian Federation
Email: ropsha.home@rambler.ru
DSc (Medicine), Professor, Head Researcher
俄罗斯联邦, St. PetersburgM. Tyunin
State Scientific-Research Test Institute of Military Medicine of Defense Ministry of the Russian Federation
Email: ropsha.home@rambler.ru
PhD (Medicine), Deputy Head, Research and Development Test Centre
俄罗斯联邦, St. PetersburgB. Kanevsky
State Scientific-Research Test Institute of Military Medicine of Defense Ministry of the Russian Federation
Email: ropsha.home@rambler.ru
Deputy Head
俄罗斯联邦, St. PetersburgN. Ilyinsky
State Scientific-Research Test Institute of Military Medicine of Defense Ministry of the Russian Federation
Email: ropsha.home@rambler.ru
Deputy Head, Scientific-Research Department
俄罗斯联邦, St. Petersburg参考
- Гайер Г. Электронная гистохимия. М.: Мир, 1974. 488 с. [Geyer G. Electronic histochemistry. Moscow: Mir, 1974. 488 p. (In Russ.)]
- Макаренко И.Е., Авдеева О.И., Ванатиев Г.В., Рыбакова А.В., Ходько С.В., Макарова М.Н., Макаров В.Г. Возможные пути и объемы введения лекарственных средств лабораторным животным // Международный вестник ветеринарии. 2013. № 3. С. 72–78. [Makarenko I.E., Avdeeva O.I., Vanati G.V., Rybakova A.V., Khodko S.V., Makarova M.N., Makarov V.G. Possible ways of administration and standard drugs in laboratory animals. Mezhdunarodnyi vestnik veterinarii = International Bulletin of Veterinary Medicine, 2013, no. 3, pp. 72–78. (In Russ.)]
- Матвеев Ю.А. Система ангиотензина II коры мозжечка и ее значение в нейрососудистой регуляции // Вестник новых медицинских технологий. 2020. № 1. С. 90–95. [Matveev Yu.A. Angiotensin II system in cerebellum cortex and its role in neuro-vascular regulation. Vestnik novykh meditsinskikh tekhnologii = Journal of New Medical Technologies, 2020, no. 1, pp. 90–95. (In Russ.)] doi: 10.24411/2075-4094-2020-16498
- Чепур С.В., Тюнин М.А., Мясников В.А., Алексеева И.И., Владимирова О.О., Ильинский Н.С., Никишин А.С., Шевченко В.А., Смирнова А.В. Поражение органов и тканей SARS-CoV-2: биологическая модель на сирийских хомяках Mesocricetus auratus для экспериментальных (доклинических) исследований // Клиническая и экспериментальная морфология. 2021. Т. 10, № 4. С. 25–34. [Chepur S.V., Tyunin M.A., Myasnikov V.A., Alekseeva I.I., Vladimirova O.O., Iljinskiy N.S., Nikishin A.S., Shevchenko V.A., Smirnova A.V. Damage to organs and tissues of SARS-CoV-2: a biological model on Syrian hamsters for experimental (preclinical) studies. Klinicheskaya i eksperimental’naya morfologiya = Clinical and Experimental Morphology, 2021, vol. 10, no. 4, pp. 25–34. (In Russ.)] doi: 10.31088/CEM2021.10.4.25-34
- Fehr A.R., Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol., 2015, vol. 1282, pp. 1–23. doi: 10.1007/978-1-4939-2438-7_1
- Ghosh S., Dellibovi-Ragheb T.A., Kerviel A., Pak E., Qiu Q., Fisher M., Takvorian P.M., Bleck C., Hsu V.W., Fehr A.R., Perlman S., Achar S.R., Straus M.R., Whittaker G.R., de Haan C.A.M., Kehrl J., Altan-Bonnet G., Altan-Bonnet N. β-coronavirus use lysosomes for egress instead of the biosynthetic secretory pathway. Cell, 2020, vol. 183, no. 6, pp. 1520–1535. doi: 10.1016/j.cell.2020.10.039
- Griffiths G., Ericsson M., Krijnse-Locker J., Nilsson T., Goud B., Söling H.D., Tang B.L., Wong S.H., Hong W. Localization of the Lys, Asp, Glu, Leu tetrapeptide receptor to the Golgi complex and the intermediate compartment in mammalian cells. J. Cell. Biol., 1994, vol. 127, no. 6, pt. 1, pp. 1557–1574. doi: 10.1083/jcb.127.6.1557
- Hanus C., Geptin H., Tushev G., Garg S., Alvarez-Castelao B., Sambandan S., Kochen L., Hafner A.S., Langer J.D., Schuman E.M. Unconventional secretory processing diversifies neuronal ion channel properties. Elife, 2016, vol. 5. doi: 10.7554/eLife.20609
- Hartenian E., Nandakumar D., Lari A., Ly M., Tucker J.M., Glaunsinger B.A. The molecular virology of coronaviruses. J. Biol. Chem., 2020, vol. 295, no. 37, pp. 12910–12934. doi: 10.1074/jbc.REV120.013930
- Horstmann H., Ng C.P., Tang B.L., Hong W. Ultrastructural characterization of endoplasmic reticulum-Golgi transport containers (EGTC). J. Cell. Sci., 2002, vol. 115, no. 22, pp. 4263–4273. doi: 10.1242/jcs.00115
- Klein S., Cortese M., Winter S.L., Wachsmuth-Melm M., Neufeldt C.J., Cerikan B., Stanifer M.L., Boulant S., Bartenschlager R., Chlanda P. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat. Commun., 2020, vol. 11, no. 5885. doi: 10.1038/s41467-020-19619-7
- Klumperman J., Locker J.K., Meijer A., Horzinek M.C., Geuze H.J., Rottier P.J. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J. Virol., 1994, vol. 68, no. 10, pp. 6523–6534. doi: 10.1128/jvi.68.10.6523-6534.1994
- Plutner H., Cox A.D., Pind S., Khosravi-Far R., Bourne J.R., Schwaninger R., Der C.J., Balch W.E. Rab1b regulates vesicular t-ransport between the e-ndoplasmic reticulum and successive Golgi compartments. J. Cell. Biol., 1991, vol. 115, no. 1, pp. 31–43. doi: 10.1083/jcb.115.1.31
- Reed L.J., Muench H. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol., 1938, vol. 27, no. 3, pp. 493–497. doi: 10.1093/oxfordjournals.aje.a118408
- Ritchie G., Harvey D.J., Feldmann F., Stroeher U., Feldmann H., Royle L., Dwek R.A., Rudd P.M. Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein. Virology, 2010, vol. 399, no. 2, pp. 257–269. doi: 10.1016/j.virol.2009.12.020
- Sannerud R., Marie M., Nizak C., Dale H.A., Pernet-Gallay K., Perez F., Goud B., Saraste J. Rab1 defines a novel pathway connecting the pre-Golgi intermediate compartment with the cell periphery. Mol. Biol. Cell, 2006, vol. 17, no. 4, pp. 1514–1526. doi: 10.1091/mbc.E05-08-0792
- Saraste J., Prydz K. Assembly and cellular exit of Coronaviruses: hijacking an unconventional secretory pathway from the pre-golgi intermediate compartment via the Golgi ribbon to the extracellular space. Cells, 2021, vol. 10, no. 3: 503. doi: 10.3390/cells10030503
- Schoeman D., Fielding B.C. Coronavirus envelope protein: current knowledge. Virol. J., 2019, vol. 16, no. 1: 69. doi: 10.1186/s12985-019-1182-0
- Stertz S., Reichelt M., Spiegel M., Kuri T., Martinez-Sobrido L., Garcia-Sastre A., Weber F., Kochs G. The intracellular sites of early replication and budding of SARS-coronavirus. Virology, 2007, vol. 361, no. 2, pp. 304–315. doi: 10.1016/j.virol.2006.11.027
- Sturman L.S., Holmes K.V. The molecular biology of coronaviruses. Adv. Virus Res., 1983, vol. 28, pp. 35–112. doi: 10.1016/S0065-3527(08)60721-6
- TaŞtan C., Yurtsever B., Sir KarakuŞ G., Dilek KanÇaĞi D., Demİr S., Abanuz S., Seyİs U., Yildirim M., Kuzay R., Elibol Ö., Arbak S., Açikel E., Birdoğan S., Sezerman U.O., Kocagöz A.S., Yalçin K., Ovali E. SARS-CoV-2 isolation and propagation from Turkish COVID-19 patients. Turk. J. Biol., 2020, vol. 44, no. 3, pp. 192–202. doi: 10.3906/biy-2004-113
- Tooze S.A., Tooze J., Warren G. Site of addition of N-acetyl-galactosamine to the E1 glycoprotein of mouse hepatitis virus-A59. J. Cell. Biol., 1988, vol. 106, no. 5, pp. 1475–1487. doi: 10.1083/jcb.106.5.1475
- Ulasli M., Verheije M.H., de Haan C.A., Reggiori F. Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus. Cell. Microbiol., 2010, vol. 12, no. 6, pp. 844–861. doi: 10.1111/j.1462-5822.2010.01437.x
- Volchuk A., Amherdt M., Ravazzola M., Brugger B., Rivera V.M., Clackson T., Perrelet A., Söllner T., Rothman J.E., Orci L. Megavesicles implicated in the rapid transport of intracisternal aggregates across the Golgi stack. Cell, 2000, vol. 102, no. 3, pp. 335–348. doi: 10.1016/S0092-8674(00)00039-8
- Westerbeck J.W., Machamer C.E. The infectious bronchitis coronavirus envelope protein alters Golgi pH to protect the spike protein and promote the release of infectious virus. J. Virol., 2019, vol. 93, no. 11: e00015-19. doi: 10.1128/JVI.00015-19
- Yao P., Zhang Y., Sun Y., Gu Y., Xu F., Su B., Chen C., Lu H., Wang D., Yang Z., Niu B., Chen J., Xie L., Chen L., Zhang Y., Wang H., Zhao Y., Guo Y., Ruan J., Zhu Z., Fu Z., Tian D., An Q., Jiang J., Zhu H. Isolation and growth characteristics of SARS-CoV-2 in Vero cell. Virol. Sin., 2020, vol. 35, no. 3, pp. 348–350. doi: 10.1007/s12250-020-00241-2
补充文件
