Investigating SARS-CoV-2 virion material trafficking in syrian hamster neocortecal neurons

封面

如何引用文章

全文:

详细

Introduction. Taking into account the experience on the new coronavirus infection COVID-19 pandemic, the relevance of studies assessing the cellular processes of SARS-CoV-2 virus assembly and transport to justify the choice of pharmacological action points has now markedly increased. The study was aimed at analyzing morphologically assessed events of SARS-CoV-2 life cycle in neocortical neurons using electron microscopy based on its traced wide prevalence in vivo and ability to penetrate the blood-brain barrier accounts.

Materials and methods. Patient-derived SARS-CoV-2 virus was obtained and accumulated in Vero(B) cell culture. An electron microscopy study (EMR) of the viral particle transport was carried out in male Syrian hamsters. Animals were inoculated intranasally with 26 μl of virus culture in an amount of 4 × 104 TCID50/ml. Animals were euthanized on day 3, 7, and 28 post-infection. The extracted brain was prepared for EMR according to methods previously described in the literature. The results were recorded using an FEI Tecnai G2 Spitit BioTWIN electron microscope.

Results. Using EMR, the morphological equivalents of virus transport variants in neocortical neurons were traced dynamically during infectious process in Syrian hamsters. After synthesis, viral membrane proteins are included in transport vesicles in the endoplasmic reticulum (ER) terminal tubules and enter the intermediate compartment (IC), a collection of smooth-walled membrane vesicles between the endoplasmic reticulum (ER) and the Golgi apparatus (AG). In the first 3 days post-infection, viral copies are included in the Ag in PC membrane-formed transport vesicles. Due to the large size, viral particles are restricted to the expanded ends of the mobile AG tanks. Morphologically, destruction of AG membranes was revealed on day 7 post-infection, which indicates an interaction between PC vesicles and preserved AG membrane elements or the implementation of their independent transport function to deliver SARS-CoV-2 virus to the cell periphery and further into the intercellular space. In the neuronal processes, the transport of mature SARS-CoV-2 viral particles associated with cytoskeletal elements was observed, which was not detected in other loci of virus persistence.

Conclusion. Based on data obtained, it is possible to hypothesize about a cumulative importance for progression and persistence of SARS-CoV-2 infection in cortical neurons. Early signs of neuron infection are represented by characteristic changes in the nuclei, ER hypertrophy and formation of “viral factories” based on the ER, PC and AG. The formation of viral biomass occurs inside neurons; virion exit from target cells is more accompanied by cell death rather than if a virus becomes incorporated in the lysosomal-endosomal system.

作者简介

S. Chepur

State Scientific-Research Test Institute of Military Medicine of Defense Ministry of the Russian Federation

Email: ropsha.home@rambler.ru

DSc (Medicine), Professor, Head

俄罗斯联邦, St. Petersburg

N. Paramonova

State Scientific-Research Test Institute of Military Medicine of Defense Ministry of the Russian Federation; Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: ropsha.home@rambler.ru

Senior Researcher, Researcher

俄罗斯联邦, St. Petersburg; St. Petersburg

I. Myasnikova

State Scientific-Research Test Institute of Military Medicine of Defense Ministry of the Russian Federation

编辑信件的主要联系方式.
Email: ropsha.home@rambler.ru

PhD (Biology), Senior Researcher

俄罗斯联邦, St. Petersburg

N. Pluzhnikov

State Scientific-Research Test Institute of Military Medicine of Defense Ministry of the Russian Federation

Email: ropsha.home@rambler.ru

DSc (Medicine), Professor, Head Researcher

俄罗斯联邦, St. Petersburg

M. Tyunin

State Scientific-Research Test Institute of Military Medicine of Defense Ministry of the Russian Federation

Email: ropsha.home@rambler.ru

PhD (Medicine), Deputy Head, Research and Development Test Centre

俄罗斯联邦, St. Petersburg

B. Kanevsky

State Scientific-Research Test Institute of Military Medicine of Defense Ministry of the Russian Federation

Email: ropsha.home@rambler.ru

Deputy Head

俄罗斯联邦, St. Petersburg

N. Ilyinsky

State Scientific-Research Test Institute of Military Medicine of Defense Ministry of the Russian Federation

Email: ropsha.home@rambler.ru

Deputy Head, Scientific-Research Department

俄罗斯联邦, St. Petersburg

参考

  1. Гайер Г. Электронная гистохимия. М.: Мир, 1974. 488 с. [Geyer G. Electronic histochemistry. Moscow: Mir, 1974. 488 p. (In Russ.)]
  2. Макаренко И.Е., Авдеева О.И., Ванатиев Г.В., Рыбакова А.В., Ходько С.В., Макарова М.Н., Макаров В.Г. Возможные пути и объемы введения лекарственных средств лабораторным животным // Международный вестник ветеринарии. 2013. № 3. С. 72–78. [Makarenko I.E., Avdeeva O.I., Vanati G.V., Rybakova A.V., Khodko S.V., Makarova M.N., Makarov V.G. Possible ways of administration and standard drugs in laboratory animals. Mezhdunarodnyi vestnik veterinarii = International Bulletin of Veterinary Medicine, 2013, no. 3, pp. 72–78. (In Russ.)]
  3. Матвеев Ю.А. Система ангиотензина II коры мозжечка и ее значение в нейрососудистой регуляции // Вестник новых медицинских технологий. 2020. № 1. С. 90–95. [Matveev Yu.A. Angiotensin II system in cerebellum cortex and its role in neuro-vascular regulation. Vestnik novykh meditsinskikh tekhnologii = Journal of New Medical Technologies, 2020, no. 1, pp. 90–95. (In Russ.)] doi: 10.24411/2075-4094-2020-16498
  4. Чепур С.В., Тюнин М.А., Мясников В.А., Алексеева И.И., Владимирова О.О., Ильинский Н.С., Никишин А.С., Шевченко В.А., Смирнова А.В. Поражение органов и тканей SARS-CoV-2: биологическая модель на сирийских хомяках Mesocricetus auratus для экспериментальных (доклинических) исследований // Клиническая и экспериментальная морфология. 2021. Т. 10, № 4. С. 25–34. [Chepur S.V., Tyunin M.A., Myasnikov V.A., Alekseeva I.I., Vladimirova O.O., Iljinskiy N.S., Nikishin A.S., Shevchenko V.A., Smirnova A.V. Damage to organs and tissues of SARS-CoV-2: a biological model on Syrian hamsters for experimental (preclinical) studies. Klinicheskaya i eksperimental’naya morfologiya = Clinical and Experimental Morphology, 2021, vol. 10, no. 4, pp. 25–34. (In Russ.)] doi: 10.31088/CEM2021.10.4.25-34
  5. Fehr A.R., Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol., 2015, vol. 1282, pp. 1–23. doi: 10.1007/978-1-4939-2438-7_1
  6. Ghosh S., Dellibovi-Ragheb T.A., Kerviel A., Pak E., Qiu Q., Fisher M., Takvorian P.M., Bleck C., Hsu V.W., Fehr A.R., Perlman S., Achar S.R., Straus M.R., Whittaker G.R., de Haan C.A.M., Kehrl J., Altan-Bonnet G., Altan-Bonnet N. β-coronavirus use lysosomes for egress instead of the biosynthetic secretory pathway. Cell, 2020, vol. 183, no. 6, pp. 1520–1535. doi: 10.1016/j.cell.2020.10.039
  7. Griffiths G., Ericsson M., Krijnse-Locker J., Nilsson T., Goud B., Söling H.D., Tang B.L., Wong S.H., Hong W. Localization of the Lys, Asp, Glu, Leu tetrapeptide receptor to the Golgi complex and the intermediate compartment in mammalian cells. J. Cell. Biol., 1994, vol. 127, no. 6, pt. 1, pp. 1557–1574. doi: 10.1083/jcb.127.6.1557
  8. Hanus C., Geptin H., Tushev G., Garg S., Alvarez-Castelao B., Sambandan S., Kochen L., Hafner A.S., Langer J.D., Schuman E.M. Unconventional secretory processing diversifies neuronal ion channel properties. Elife, 2016, vol. 5. doi: 10.7554/eLife.20609
  9. Hartenian E., Nandakumar D., Lari A., Ly M., Tucker J.M., Glaunsinger B.A. The molecular virology of coronaviruses. J. Biol. Chem., 2020, vol. 295, no. 37, pp. 12910–12934. doi: 10.1074/jbc.REV120.013930
  10. Horstmann H., Ng C.P., Tang B.L., Hong W. Ultrastructural characterization of endoplasmic reticulum-Golgi transport containers (EGTC). J. Cell. Sci., 2002, vol. 115, no. 22, pp. 4263–4273. doi: 10.1242/jcs.00115
  11. Klein S., Cortese M., Winter S.L., Wachsmuth-Melm M., Neufeldt C.J., Cerikan B., Stanifer M.L., Boulant S., Bartenschlager R., Chlanda P. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat. Commun., 2020, vol. 11, no. 5885. doi: 10.1038/s41467-020-19619-7
  12. Klumperman J., Locker J.K., Meijer A., Horzinek M.C., Geuze H.J., Rottier P.J. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J. Virol., 1994, vol. 68, no. 10, pp. 6523–6534. doi: 10.1128/jvi.68.10.6523-6534.1994
  13. Plutner H., Cox A.D., Pind S., Khosravi-Far R., Bourne J.R., Schwaninger R., Der C.J., Balch W.E. Rab1b regulates vesicular t-ransport between the e-ndoplasmic reticulum and successive Golgi compartments. J. Cell. Biol., 1991, vol. 115, no. 1, pp. 31–43. doi: 10.1083/jcb.115.1.31
  14. Reed L.J., Muench H. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol., 1938, vol. 27, no. 3, pp. 493–497. doi: 10.1093/oxfordjournals.aje.a118408
  15. Ritchie G., Harvey D.J., Feldmann F., Stroeher U., Feldmann H., Royle L., Dwek R.A., Rudd P.M. Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein. Virology, 2010, vol. 399, no. 2, pp. 257–269. doi: 10.1016/j.virol.2009.12.020
  16. Sannerud R., Marie M., Nizak C., Dale H.A., Pernet-Gallay K., Perez F., Goud B., Saraste J. Rab1 defines a novel pathway connecting the pre-Golgi intermediate compartment with the cell periphery. Mol. Biol. Cell, 2006, vol. 17, no. 4, pp. 1514–1526. doi: 10.1091/mbc.E05-08-0792
  17. Saraste J., Prydz K. Assembly and cellular exit of Coronaviruses: hijacking an unconventional secretory pathway from the pre-golgi intermediate compartment via the Golgi ribbon to the extracellular space. Cells, 2021, vol. 10, no. 3: 503. doi: 10.3390/cells10030503
  18. Schoeman D., Fielding B.C. Coronavirus envelope protein: current knowledge. Virol. J., 2019, vol. 16, no. 1: 69. doi: 10.1186/s12985-019-1182-0
  19. Stertz S., Reichelt M., Spiegel M., Kuri T., Martinez-Sobrido L., Garcia-Sastre A., Weber F., Kochs G. The intracellular sites of early replication and budding of SARS-coronavirus. Virology, 2007, vol. 361, no. 2, pp. 304–315. doi: 10.1016/j.virol.2006.11.027
  20. Sturman L.S., Holmes K.V. The molecular biology of coronaviruses. Adv. Virus Res., 1983, vol. 28, pp. 35–112. doi: 10.1016/S0065-3527(08)60721-6
  21. TaŞtan C., Yurtsever B., Sir KarakuŞ G., Dilek KanÇaĞi D., Demİr S., Abanuz S., Seyİs U., Yildirim M., Kuzay R., Elibol Ö., Arbak S., Açikel E., Birdoğan S., Sezerman U.O., Kocagöz A.S., Yalçin K., Ovali E. SARS-CoV-2 isolation and propagation from Turkish COVID-19 patients. Turk. J. Biol., 2020, vol. 44, no. 3, pp. 192–202. doi: 10.3906/biy-2004-113
  22. Tooze S.A., Tooze J., Warren G. Site of addition of N-acetyl-galactosamine to the E1 glycoprotein of mouse hepatitis virus-A59. J. Cell. Biol., 1988, vol. 106, no. 5, pp. 1475–1487. doi: 10.1083/jcb.106.5.1475
  23. Ulasli M., Verheije M.H., de Haan C.A., Reggiori F. Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus. Cell. Microbiol., 2010, vol. 12, no. 6, pp. 844–861. doi: 10.1111/j.1462-5822.2010.01437.x
  24. Volchuk A., Amherdt M., Ravazzola M., Brugger B., Rivera V.M., Clackson T., Perrelet A., Söllner T., Rothman J.E., Orci L. Megavesicles implicated in the rapid transport of intracisternal aggregates across the Golgi stack. Cell, 2000, vol. 102, no. 3, pp. 335–348. doi: 10.1016/S0092-8674(00)00039-8
  25. Westerbeck J.W., Machamer C.E. The infectious bronchitis coronavirus envelope protein alters Golgi pH to protect the spike protein and promote the release of infectious virus. J. Virol., 2019, vol. 93, no. 11: e00015-19. doi: 10.1128/JVI.00015-19
  26. Yao P., Zhang Y., Sun Y., Gu Y., Xu F., Su B., Chen C., Lu H., Wang D., Yang Z., Niu B., Chen J., Xie L., Chen L., Zhang Y., Wang H., Zhao Y., Guo Y., Ruan J., Zhu Z., Fu Z., Tian D., An Q., Jiang J., Zhu H. Isolation and growth characteristics of SARS-CoV-2 in Vero cell. Virol. Sin., 2020, vol. 35, no. 3, pp. 348–350. doi: 10.1007/s12250-020-00241-2

补充文件

附件文件
动作
1. JATS XML
2. Figure 1. Free SARS-CoV-2-sized (80–100 nm) protein-pubescent vesicles in the processes (A, B) and neuronal perikarya (C–D), often near altered cavities of the ER or AG, after infection with SARS-CoV-2 4 × 104 TCD50/ml (26 μl/individual intranasally). Electronograms. Scale: A — 105 000, B — 135 000, C — 43 000, D — 16 500

下载 (1MB)
3. Figure 2. Pinocytosis variants for “pubescent” particles commensurate with viruses in neocortical neuropil after infection with SARS-CoV-2 4 × 104 TCD50/ml (26 μl/individual intranasally). Formation of protein-decorated pinocytotic vesicles (A–B), containing membrane-surrounded material of the intercellular space. Nonspecific processes of pinocytosis and exocytosis, including viral material of the structures of vascular walls (C) and cortical surface cells (D). Electronograms. Scale: A — 105 000, B — 60 000, C — 26 500, D — 60 000

下载 (1MB)
4. Figure 3. Neuronal ultrastructure after infection with SARS-CoV-2 4 × 104 TCD50/ml (26 μl/individual, intranasally inoculated). In neuronal karyoplasm, numerous nucleoli were traced, localized near the membrane; nuclear contour is often changed from round to lobed (A–C) with expanded perinuclear space (B) and accumulated ribosomes in the cytolemma adjacent to the nucleus (A–C). ER tubules are often connected to the nuclear membrane, AG cisterns are swollen and stick together (D). Electronograms. Scale: A — 6000, B — 20 500, C — 9900, D — 26 500

下载 (1MB)
5. Figure 4. Formation of viral “factories” based on deformation changes in ER structures after infection with SARSCoV- 2 4 × 104 TCD50/ml (26 μl/individual intranasally). Expansion of the terminal sections of the ER thin tubules (A), with “pubescence” of the viral protein on the “ampullary” extensions (B). Hypertrophy and adhesion of dilated ER tubules (C). Fusion of ER membranes resulting in viral “factories” and viral particle budding (D). Electronograms. Scale: A — 43 000, B — 60 000, C and D — 26 500

下载 (1MB)
6. Figure 5. Changes in AG after infection with SARS-CoV-2 4 × 104 TCD50/ml (26 μl/individual intranasally). Uneven swelling of AG cisterns (A), ring-shaped AG with loss of cis/trans polarity (B); AG hypertrophy in neuronal perikarya (C); modified AG extends inside the dendrite distantly from the soma (D); adhesion of swollen AG tanks (B), the resulting conglomerate of the viral factory (F) total proliferation of “pubescent” vesicles commensurate with the CoV virus based on lamellar complex reorganizations (A–F). Electronograms. Scale: A — 60 000, B — 20 500, C — 16 500, D — 26 500, E — 43 000, F — 60 000

下载 (1MB)
7. Figure 6. Multivesicular bodies in neocortical neurons after infection with SARS-CoV-2 4 × 104 TCD50/ml (26 μl/ individual intranasally). Complexes of multivesicular bodies with cytoskeletal elements (A, D), their representation within altered AG (B) and in cytosolic areas with enhanced protein synthetic activity (C). Electronograms. Scale: A — 105 000, B — 26 500, C — 20 500, D — 43 000

下载 (1MB)

版权所有 © Chepur S.V., Paramonova N.M., Myasnikova I.A., Pluzhnikov N.N., Tyunin M.A., Kanevsky B.A., Ilyinsky N.S., 2024

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».