Assessing molecular genetic and immunological predictors of COVID-19 course in healthcare worker risk group
- Authors: Reshetnikova I.D.1,2, Tyurin Y.A.1,3, Mustafin I.G.3, Agafonova E.V.1, Shaуkhrazieva N.D.4
-
Affiliations:
- Kazan Research Institute of Epidemiology and Microbiology of Rospotrebnadzor
- Kazan (Volga Region) Federal University, Ministry of Education of the Russian Federation
- Kazan State Medical University, Ministry of Health of the Russian Federation
- Kazan State Medical Academy — Branch of the Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation
- Issue: Vol 14, No 2 (2024)
- Pages: 289-298
- Section: ORIGINAL ARTICLES
- URL: https://journal-vniispk.ru/2220-7619/article/view/262369
- DOI: https://doi.org/10.15789/2220-7619-AMG-10359
- ID: 262369
Cite item
Full Text
Abstract
Relevance. Studying features of innate and adaptive mechanisms of immune response in medical workers (MW), the most vulnerable social group with a high risk of infection, is an urgent research task. The aim of the study: Comprehensive study of innate and adaptive immune mechanisms and analyzing relationships between clinically significant polymorphisms (SNPs) in TLR2, TLR4 genes, TLR2 expression level on peripheral blood monocytes, peripheral blood cytokine profile (IL-1β, IL-10, IL-6, IFNγ, platelet activation marker) and SARS-CoV-2-specific humoral immune response in medical workers (MW) at a temporary infectious disease hospital in early and late COVID-19 convalescence. Materials and methods. immunologic, cytofluorimetric and molecular-genetic research methods were applied. Adaptive immune response in medical workers — COVID-19 convalescent subjects. Results. Early post-COVID-19 convalescence period in MW was linked to higher TLR2 monocyte expression; the mean fluorescence intensity was significantly elevated by 1.5-fold compared to control group. Late convalescence period (7 months post-COVID-19) was characterized by lowered serum IFNγ level. A decline in IFNγ production was significant: decreased by 82-fold in MR that was markedly stronger compared to control group (59 times). The imbalance of cytokines controlling antiviral innate and adaptive immune response was revealed in MW with identified combination of polymorphisms rs5743708 and rs4986790 in TLR2, TLR4 genes with the rate not exceeding 6.7%. It was found that 7 months after COVID-19 there was a markedly decreased IFNγ, IL-1β and IL-10 levels. The studies indicate both altered innate and adaptive immune mechanisms and a need to optimize therapeutic and prophylactic measures aimed at increasing patient-intrinsic resistance, protection of respiratory tract mucosal barriers and identification of genetic predictors of defects in innate and adaptive immune response in medical workers — COVID-19 convalescent subjects.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
I. D. Reshetnikova
Kazan Research Institute of Epidemiology and Microbiology of Rospotrebnadzor; Kazan (Volga Region) Federal University, Ministry of Education of the Russian Federation
Email: kniem@mail.ru
PhD (Medicine), Associate Professor, Deputy Head; Associate Professor of the Department of Internal Medicine, Department of Fundamental Clinical Medicine
Russian Federation, Kazan; KazanYu. A. Tyurin
Kazan Research Institute of Epidemiology and Microbiology of Rospotrebnadzor; Kazan State Medical University, Ministry of Health of the Russian Federation
Author for correspondence.
Email: kniem@mail.ru
DSc (Medicine), Leading Researcher, Head of Immunology Laboratory; Associate Professor, Department of Biochemistry and Clinical Laboratory Diagnostics
Russian Federation, Kazan; KazanI. G. Mustafin
Kazan State Medical University, Ministry of Health of the Russian Federation
Email: kniem@mail.ru
DSc (Medicine), Professor, Head of the Department of Biochemistry and Clinical Laboratory Diagnostics
Russian Federation, KazanE. V. Agafonova
Kazan Research Institute of Epidemiology and Microbiology of Rospotrebnadzor
Email: kniem@mail.ru
PhD (Medicine), Laboratory Diagnostics Doctor, Diagnostics Centre of Infection-Allergic Diseases; Assistant Professor, Department of Propedeutics of Child Diseases
Russian Federation, KazanN. D. Shaуkhrazieva
Kazan State Medical Academy — Branch of the Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation
Email: kniem@mail.ru
PhD (Medicine), Associate Professor, Department of Epidemiology and Desinfectology
Russian Federation, KazanReferences
- База данных однонуклеотидных полиморфизмов. NCBI dbSNP rs4986790. URL: https://www.ncbi.nlm.nih.gov/snp/rs4986790#frequency_tab (06.05.2023)
- База данных однонуклеотидных полиморфизмов. NCBI dbSNP rs5743708. URL: https://www.ncbi.nlm.nih.gov/snp/?term= rs5743708 (06.05.2023)
- Решетникова И.Д., Агафонова Е.В., Хакимов Н.М., Тюрин Ю.A., Шайхразиева Н.Д., Зиатдинов В.Б. Особенности гуморального иммунного ответа к SARS-CoV-2 у медицинских работников временного инфекционного госпиталя // Эпидемиология и Вакцинопрофилактика. 2023. Т. 22, № 1. С. 13–21. [Reshetnikova I.D., Agafonova E.V., Tyurin Yu.A., Shaikhrazieva N.D., Ziatdinov V.B. Features of the formation of seroprevalence to SARS-CoV2 in the population of the Republic of Tatarstan during the spread of COVID-19. Epidemiologiya i vaktsinoprofilaktika = Epidemiology and Vaccine Prophylaxis, 2023, vol. 22, no. 1, pp. 13–21. (In Russ.)] doi: 10.31631/2073-3046-2023-22-1-13-21
- Aboudounya M.M., Heads R.J. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediators Inflamm., 2021, no. 2021: 8874339. doi: 10.1155/2021/8874339
- Henn V., Slupsky J.R., Gräfe M., Anagnostopoulos I., Förster R., Müller-Berghaus G., Kroczek R.A. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature, 1998, vol. 391, no. 6667, pp. 591–594. doi: 10.1038/35393
- Iwata S., Tanaka Y. [The importance of B cell-T cell interaction in autoimmune diseases]. Nihon Rinsho Meneki Gakkai Kaishi. 2015, vol. 38, no. 5, pp. 398–402. (In Japan.). doi: 10.2177/jsci.38.398
- Khanmohammadi S., Rezaei N. Role of Toll-like receptors in the pathogenesis of COVID-19. J. Med. Virol., 2021, vol. 93, no. 5, pp. 2735–2739. doi: 10.1002/jmv.26826
- Larsen M.D., de Graaf E.L., Sonneveld M.E., Plomp H.R., Nouta J., Hoepel W., Chen H.J., Linty F., Visser R., Brinkhaus M., Šuštić T., de Taeye S.W., Bentlage A.E.H., Toivonen S., Koeleman C.A.M., Sainio S., Kootstra N.A., Brouwer P.J.M., Geyer C.E., Derksen N.I.L., Wolbink G., de Winther M., Sanders R.W., van Gils M.J., de Bruin S., Vlaar A.P.J.; Amsterdam UMC COVID-19; biobank study group; Rispens T., den Dunnen J., Zaaijer H.L., Wuhrer M., Ellen van der Schoot C., Vidarsson G. Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science, 2021, vol. 371, no. 6532: eabc8378. doi: 10.1126/science.abc8378
- Long Q.X., Liu B.Z., Deng H.J., Wu G.C., Deng K., Chen Y.K., Liao P., Qiu J.F., Lin Y., Cai X.F., Wang D.Q., Hu Y., Ren J.H., Tang N., Xu Y.Y., Yu L.H., Mo Z., Gong F., Zhang X.L., Tian W.G., Hu L., Zhang X.X., Xiang J.L., Du H.X., Liu H.W., Lang C.H., Luo X.H., Wu S.B., Cui X.P., Zhou Z., Zhu M.M., Wang J., Xue C.J., Li X.F., Wang L., Li Z.J., Wang K., Niu C.C., Yang Q.J., Tang X.J., Zhang Y., Liu X.M., Li J.J., Zhang D.C., Zhang F., Liu P., Yuan J., Li Q., Hu J.L., Chen J., Huang A.L. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med., 2020, vol. 26, no. 6, pp. 845–848. doi: 10.1038/s41591-020-0897-1
- López E.L., Ferolla F.M., Toledano A., Yfran E.W., Giordano A.C., Carrizo B., Feldman F., Talarico L.B., Caratozzolo A., Contrini M.M., Acosta P.L.; GUTI Respiratory Infections Network. Genetic Susceptibility to Life-threatening Respiratory Syncytial Virus Infection in Previously Healthy Infants. Pediatr. Infect. Dis. J., 2020, vol. 39, no. 11, pp. 1057–1061. doi: 10.1097/INF.0000000000002827
- Lorkiewicz P., Waszkiewicz N. Biomarkers of Post-COVID Depression. J. Clin. Med., 2021, vol. 10, no. 18: 4142. doi: 10.3390/jcm10184142
- Menden H.L., Mabry S.M., Venkatraman A., Xia S., DeFranco D.B., Yu W., Sampath V. The SARS-CoV-2 E protein induces Toll-like receptor 2-mediated neonatal lung injury in a model of COVID-19 viremia that is rescued by the glucocorticoid ciclesonide. Am. J. Physiol. Lung Cell Mol. Physiol., 2023, vol. 324, no. 5, pp. L722–L736. doi: 10.1152/ajplung.00410.2022
- Miri-Moghaddam E., Farhad Mollashahi N., Naghibi N., Garme Y., Bazi A. Arg753gln and Arg677 Trp Polymorphisms of Toll-Like Receptor 2 In Acute Apical Abscess. J. Dent. (Shiraz), 2018, vol. 19, no. 2, pp. 109–117.
- Peghin M., Palese A., Venturini M., De Martino M., Gerussi V., Graziano E., Bontempo G., Marrella F., Tommasini A., Fabris M., Curcio F., Isola M., Tascini C. Post-COVID-19 symptoms 6 months after acute infection among hospitalized and non-hospitalized patients. Clin. Microbiol. Infect., 2021, vol. 27, no. 10, pp. 1507–1513. doi: 10.1016/j.cmi.2021.05.033
- Rojas M., Rodríguez Y., Acosta-Ampudia Y., Monsalve D.M., Zhu C., Li Q.Z., Ramírez-Santana C., Anaya J.M. Autoimmunity is a hallmark of post-COVID syndrome. J. Transl. Med., 2022, vol. 20, no. 1: 129. doi: 10.1186/s12967-022-03328-4
- Root-Bernstein R. Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions. Int. J. Mol. Sci., 2021, vol. 22, no. 4: 2108. doi: 10.3390/ijms22042108
- Zanza C., Romenskaya T., Manetti A.C., Franceschi F., La Russa R., Bertozzi G., Maiese A., Savioli G., Volonnino G., Longhitano Y. Cytokine Storm in COVID-19: Immunopathogenesis and Therapy. Medicina (Kaunas), 2022, vol. 58, no. 2: 144. doi: 10.3390/medicina58020144
- Zhao J., Yuan Q., Wang H., Liu W., Liao X., Su Y., Wang X., Yuan J., Li T., Li J., Qian S., Hong C., Wang F., Liu Y., Wang Z., He Q., Li Z., He B., Zhang T., Fu Y., Ge S., Liu L., Zhang J., Xia N., Zhang Z. Antibody Responses to SARS-CoV-2 in Patients With Novel Coronavirus Disease 2019. Clin. Infect. Dis., 2020, vol. 71, no. 16, pp. 2027–2034. doi: 10.1093/cid/ciaa344
- Zhao Y., Kuang M., Li J., Zhu L., Jia Z., Guo X., Hu Y., Kong J., Yin H., Wang X., You F. SARS-CoV-2 spike protein interacts with and activates TLR41. Cell Res., 2021, vol. 31, no. 7, pp. 818–820. doi: 10.1038/s41422-021-00495-9
- Żukowski M., Taryma-Leśniak O., Kaczmarczyk M., Kotfis K., Szydłowski Ł., Ciechanowicz A., Brykczyński M., Żukowska A. Relationship between toll-like receptor 2 R753Q and T16934A polymorphisms and Staphylococcus aureus nasal carriage. Anaesthesiol Intensive Ther., 2017, vol. 49, no. 2, pp. 110–115. doi: 10.5603/AIT.a2017.0027
Supplementary files
