Importance of virological surveillance after migrants from polio high-risk territories for poliomyelitis monitoring in the Russian Federation

Cover Page

Cite item

Full Text

Abstract

The results of virologically examined biological material collected from children and poliovirus-specific immunity arrived in the Russian Federation from polio high risk territories were analyzed. Over a ten-year period (2014–2023), more than 3.300 samples were examined at the Subnational WHO Laboratory in St. Petersburg. Most of the examined children arrived in different regions of the Russian Federation from the Republics of Tajikistan (56.5%) or Uzbekistan (6.2%) and from Ukraine (5.8%). Children who arrived from the North Caucasus were also examined comprising 22.2% examined cases. Polioviruses (65 PV) were isolated from 55 children during virological study. Most isolated strains were classified as types 1 and 3 polioviruses, with six strains classified as type 2. Only vaccine polioviruses were found, including type 2 polioviruses according to the ITD results. One PV2 strain was isolated from a child from Kyrgyzstan in 2014, and five PV2 strains from the new nOPV2 vaccine were isolated from Tajik children in 2021 after using nOPV2 vaccine to suppress cVDPV2 circulation in Tajikistan. Analysis of vaccination status in children arrived from high polio risk territories revealed problems poor immunization coverage in relevant place of residence. More than a third of children had no vaccination records, about 9% children had no polio vaccination for various reasons including medical exemptions and refusals of parents to vaccinate, another 12% were vaccinated incompletely. A comparatively analyzed effectiveness of polio vaccination for children resident in the Russian Federation and those who arrived from Tajikistan also evidenced poor polio immunization coverage in the latter. Many children from Tajikistan had no antibodies specific to polioviruses of different types, and 11–12% of children did not have antibodies to all three or two vaccine poliovirus types (according to the 2006–2010 or 2014–2020 vaccination schedules). The data obtained confirm the importance and need for epidemiological and virological surveillance for residents arrived from polio high risk territories in Russia within poliomyelitis control programme in the Russian Federation.

About the authors

Olga I. Kanaeva

St. Petersburg Pasteur Institute

Author for correspondence.
Email: kanaeva@pasteurorg.ru

PhD (Biology), Senior Researcher, Laboratory of Etiology and Control of Viral Infections

Russian Federation, St. Petersburg

N. I. Romanenkova

St. Petersburg Pasteur Institute

Email: kanaeva@pasteurorg.ru

PhD (Medicine), Senior Researcher, Leading Researcher, Laboratory of Etiology and Control of Viral Infections

Russian Federation, St. Petersburg

V. A. Evseeva

St. Petersburg Pasteur Institute

Email: kanaeva@pasteurorg.ru

Researcher, Laboratory of Etiology and Control of Viral Infections

Russian Federation, St. Petersburg

N. A. Tolstykh

St. Petersburg Pasteur Institute

Email: kanaeva@pasteurorg.ru

PhD (Biology), Researcher, Laboratory of Etiology and Control of Viral Infections

Russian Federation, St. Petersburg

T. N. Pogrebnaya

Center of Hygiene And Epidemiology in Kaliningrad Region

Email: kanaeva@pasteurorg.ru

Head of the Virological Laboratory

Russian Federation, Kaliningrad

M. A. Blokhinova

St. Petersburg Pasteur Institute

Email: kanaeva@pasteurorg.ru

Research Laboratory Assistant, Laboratory of Etiology and Control of Viral Infections

Russian Federation, St. Petersburg

K. A. Antonenkov

St. Petersburg Pasteur Institute

Email: kanaeva@pasteurorg.ru

Research Laboratory Assistant, Laboratory of Etiology and Control of Viral Infections

Russian Federation, St. Petersburg

References

  1. Ланкин А.О., Сокол В.В., Николаев В.А., Фурсова Е.А. Медико-социальные аспекты туберкулеза трудовых мигрантов // Научное обозрение. Медицинские науки. 2022. № 3. С. 86–90. [Lankin A.O., Sokol V.V., Nikolaev V.A., Firsov E.A. Medical and social aspects of tuberculosis in migrant workers. Nauchnoe obozrenie. Meditsinskie nauki = Scientific Review. Medical Sciences, 2022, vol. 3, pp. 86–90. (In Russ.)]
  2. Рахматулина М.Р., Брико Н.И., Новоселова Е.Ю., Лопухов П.Д. Рост заболеваемости сифилисом в Российской Федерации: иностранные граждане-мигранты как группа риска распространения заболевания // Журнал микробиологии, эпидемиологии и иммунобиологии. 2023. Т. 100, № 6. С. 454–461. [Rakhmatulina M.R., Briko N.I., Novoselova E.Yu., Lopukhov P.D. Increasing incidence of syphilis in the Russian Federation: foreign migrant citizens as a risk group for the spread of the diseaseZhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2023, vol. 6, pp. 454–461. (In Russ.)] doi: 10.36233/0372-9311-382
  3. Романенкова Н.И., Бичурина М.А., Розаева Н.Р., Погребная Т.Н. Роль эпидемиологического надзора за мигрантами в системе надзора за полиомиелитом // Журнал микробиологии, эпидемиологии и иммунобиологии. 2012. Т. 89, № 6. С. 27–31. [Romanenkova N.I., Bichurina M.A., Rozaeva N.R., Pogrebnaya T.N. The role of epidemiologic surveillance of migrants in the system of poliomyelitis control. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2012, vol. 89, no. 6, pp. 27–31. (In Russ.)]
  4. Романенкова Н.И., Канаева О.И., Бичурина М.А., Розаева Н.Р. Детекция неполиомиелитных энтеровирусов у больных острыми вялыми параличами, детей из организованных коллективов и детей из семей мигрантов // Журнал инфектологии. 2014. Т. 6, № 4. С. 43–48. [Romanenkova N.I., Kanaeva O.I., Bichurina M.A., Rozaeva N.R. Detection of Nonpolio Enteroviruses among children with acute flaccid paralysis from institutions and from migrants’ families. Zhurnal infektologii = Journal Infectology, 2014, vol. 6, no. 4, pp. 43–48. (In Russ.)]
  5. Романенкова Н.И., Розаева Н.Р., Бичурина М.А., Канаева О.И., Чхинджерия И.Г. Вакциноассоциированный паралитический полиомиелит и острые вялые параличи на ряде территорий России за двадцатилетний период // Журнал инфектологии. 2019. Т. 11, № 3. С. 102–109. [Romanenkova N.I., Rozaeva N.R., Bichurina M.A., Kanaeva O.I., Chkhyndzheriya I.G. Vaccineassociated paralytic poliomyelitis and acute flaccid paralysis on some territories of Russia during 20 years. Zhurnal infektologii = Journal Infectology, 2019, vol. 11, no. 3, pp. 102–109. (In Russ.)] doi: 10.22625/2072-6732-2019-11-3-102-109
  6. Руководство по лабораторным исследованиям полиомиелита. 4-е изд. Женева: ВОЗ, 2005. 112 с. [Manual for the virological investigation of polio. 4th ed. Geneva: WHO, 2004. 112 p. (In Russ.)] URL: http://whqlibdoc.who.int/hq/2004/ WHO_IVB_04.10.pdf
  7. СанПиН 3.3686-21. Санитарно-эпидемиологические требования по профилактике инфекционных болезней [Sanitary rules for prevention of infectious diseases 3.1.2951-11. (In Russ.)] URL: https://www.rospotrebnadzor.ru/files/news/SP_infections_compressed.pdf
  8. Троценко О.Е., Сапега Е.Ю., Бутакова Л.В. Актуальные аспекты этиологии, эпидемиологии и профилактики полиомиелита и энтеровирусной (неполио) инфекции на национальном и глобальном уровне // Дальневосточный журнал инфекционной патологии. 2023. № 45. С. 86–98. [Trotsenko O.E., Sapega E.Yu., Butakova L.V. Current aspects of etiology, epidemiology and prevention of poliomyelitis and enterovirus (non-polio) infection of national and global levels. Dal’nevostochnyj zhurnal infektsionnoy patologii = Far Eastern Journal of Infectious Pathology, 2023, vol. 45, pp. 86–98. (In Russ.)]
  9. Asturias E.J., Bandyopadhyay A.S., Self S., Rivera L., Saez-Llorens X., Lopez E., Melgar M., Gaensbauer J.T., Weldon W.C., Oberste M.S., Borate B.R., Gast C., Clemens R., Orenstein W., O’Ryan M.G., Jimeno J., Clemens S.A.C., Ward J., Rüttimann R.; Latin American IPV001BMG Study Group. Humoral and intestinal immunity induced by new schedules of bivalent oral poliovirus vaccine and one or two doses of inactivated poliovirus vaccine in Latin American infants: an open-label randomised controlled trial. Lancet, 2016, vol. 388, no. 10040, pp. 158–169. doi: 10.1016/S0140-6736(16)00703-0
  10. Burns C.C., Shaw J., Jorba J., Bukbuk D., Adu F., Gumede N., Pate A.M., Abanida E.A., Gasasira A., Iber J., Chen Q., Vincent A., Chenoweth P., Henderson E., Wannemuehler K., Naeem A., Umami R.N., Nishimura Y., Shimizu H., Baba M., Adeniji A., Williams A.J., Kilpatrick D.R., Oberste M.S., Wassilak S.G., Tomori O., Pallansch M.A., Kew O. Multiple independent emergences of type 2 vaccine-derived polioviruses during a large outbreak in northern Nigeria. J. Virol., 2013, vol. 87, no. 9, pp. 4907–4922. doi: 10.1128/JVI.02954-12
  11. Connor R.I., Brickley E.B., Wieland-Alter W.F., Ackerman M.E., Weiner J.A., Modlin J.F., Bandyopadhyay A.S., Wright P.F. Mucosal immunity to poliovirus. Mucosal Immunol., 2022, vol. 15, no. 1, pp. 1–9. doi: 10.1038/s41385-021-00428-0
  12. Cooper L.V., Erbeto T.B., Danzomo A.A., Abdullahi H.W., Boateng K., Adamu U.S., Shuaib F., Modjirom N., Gray E.J., Bandyopadhyay A.S., Zipursky S., Okiror S.O., Grassly N.C., Blake I.M. Effectiveness of poliovirus vaccines against circulating vaccine-derived type 2 poliomyelitis in Nigeria between 2017 and 2022: a case-control study. Lancet Infect. Dis., 2023, vol. 24, no. 4, pp. 427–436. doi: 10.1016/S1473-3099(23)00688-6
  13. Kilpatrick D.R., Yang C.F., Ching K., Vincent A., Iber J., Campagnoli R., Mandelbaum M., De L., Yang S.-J., Nix A., Kew O.M. Rapid group-, serotype-, and vaccine strain-specific identification of poliovirus isolates by real-time reverse transcription-PCR using degenerate primers and probes containing deoxyinosine residues. J. Clin. Microbiol., 2009, vol. 47, no. 6, pp. 1939–1941. doi: 10.1128/JCM.00702-09
  14. Macklin G.R., O’Reilly K.M., Grassly N.C., Edmunds W.J., Mach O., Santhana Gopala Krishnan R., Voorman A., Vertefeuille J.F., Abdelwahab J., Gumede N., Goel A., Sosler S., Sever J., Bandyopadhyay A.S., Pallansch M.A., Nandy R., Mkanda P., Diop O.M., Sutter R.W. Evolving epidemiology of poliovirus serotype 2 following withdrawal of the serotype 2 oral poliovirus vaccine. Science, 2020, vol. 368, no. 6489, pp. 401–405. doi: 10.1126/science.aba1238
  15. Macklin G.R., Peak C., Eisenhawer M., Kurji F., Mach O., Konz J., Gast C., Bachtiar N.S., Bandyopadhyay A.C., Zipursky S., nOPV2 Working Group. Enabling accelerated vaccine roll-out for Public Health Emergencies of International Concern (PHEICs): Novel Oral Polio Vaccine type 2 (nOPV2) experience. Vaccine, 2023, vol. 41, no. 6, pp. 122–127. doi: 10.1016/j.vaccine.2022.02.050
  16. Mangal T.D., Aylward R.B., Mwanza M., Gasasira A., Abanida E., Pate M.A., Grassly N.C. Key issues in the persistence of poliomyelitis in Nigeria: a case-control study. Lancet Glob. Health, 2012, vol. 2, no. 2, pp. 90–97. doi: 10.1016/S2214-109X(13)70168-2
  17. Minor P.D., Dunn G., Ramsay M.E., Brown D. Effect of different immunisation schedules on the excretion and reversion of oral poliovaccine strains. J. Med. Virol., 2005, vol. 75, no. 1, pp. 153–160. doi: 10.1002/jmv.20250
  18. Special report on the 36th meeting of the European Regional Certification Commission for Poliomyelitis Eradication: Copenhagen, Denmark, 19–20 October 2022: twenty years of polio-free status in the WHO European Region. Copenhagen: WHO Regional Office for Europe, 2022. Copenhagen: WHO Regional Office for Europe, 2022. URL: https://www.who.int/europe/publications/i/item/WHO-EURO-2023-6967-46733-68044
  19. Statement following the Thirty-seventh Meeting of the IHR Emergency Committee for Polio. URL: https://www.who.int/news/item/22-12-2023-statement-following-the-thirty-seventh-meeting-of-the-ihr-emergency-committee-for-polio
  20. Te Yeh M., Bujaki E., Dolan P.T., Smith M., Wahid R., Konz J., Weiner A.J., Bandyopadhyay A.S., Van Damme P., Coster I.D., Revets H., Macadam A., Andino R. Engineering the live-attenuated polio vaccine to prevent reversion to virulence. Cell. Host Microbe, 2020, vol. 27, no. 5, pp. 736–751. doi: 10.1016/j.chom.2020.04.003
  21. Weekly Epidemiological Record. Progress towards polio eradication worldwide, January 2022–December 2023, vol. 99, no. 21, pp. 274–283. URL: https://iris.who.int/bitstream/handle/10665/376866/WER9921-eng-fre.pdf
  22. Wright P.F., Connor R.I., Wieland-Alter W.F., Hoen A.G., Boesch A.W., Ackerman M.E., Oberste M.S., Gast C., Brickley E.B., Asturias E.J., Rüttimann R., Bandyopadhyay A.S. Vaccine-induced mucosal immunity to poliovirus: analysis of cohorts from an open-label, randomised controlled clinical trial in Latin American infants. Lancet Infect. Dis., 2016, vol. 16, no. 12, pp. 1377–1384. doi: 10.1016/S1473-3099(16)30169-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Poliovirus types, isolated from migrant children, 2014–2023

Download (72KB)

Copyright (c) 2024 Kanaeva O.I., Romanenkova N.I., Evseeva V.A., Tolstykh N.A., Pogrebnaya T.N., Blokhinova M.A., Antonenkov K.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».