Arvi pattern in the Northwest federal district during the COVID-19 pandemic (2021–2022)

Cover Page

Cite item

Full Text

Abstract

Acute respiratory viral infections still remain a pressing health problem, causing both seasonal outbreaks and epidemics and global pandemics. The emergence of a new coronavirus infection has become a serious challenge, resulting in more than 776 million cases of disease and more than 7 million deaths worldwide, which could not but affect the circulation of existing seasonal pathogens. This paper provides a retrospective analysis of the structure of acute respiratory viral infections during the height of the COVID-19 pandemic using the example of a single subject (Northwestern Federal District) in the autumn-winter periods of 2021–2022, presents the dynamics of the incidence of acute respiratory viral infections and influenza in Russia and the Northwestern Federal District, cases of co-infections were identified and analyzed. It is shown that between 2021 and 2022, the accession of a new coronavirus infection increased the overall incidence of respiratory viral infections until August 2022, and the decrease in COVID-19 incidence by the end of 2022 compared with the incidence of other respiratory viruses. ARVI pathogens that circulated during the COVID-19 pandemic were identified, namely: influenza A virus, adenoviruses, seasonal coronaviruses, rhinoviruses, bocaviruses, respiratory syncytial virus and type 3 parainfluenza virus. The results of the study showed that influenza A virus, bocaviruses and respiratory syncytial virus are more often detected as monoinfections and can influence the spread of other respiratory viruses. While adenoviruses, rhinoviruses and type 3 parainfluenza viruses are most often found in the form of co-infection with COVID-19, which creates an additional viral load in patients and can complicate the course of the disease.

About the authors

A. A. Sharova

St. Petersburg Pasteur Institute

Author for correspondence.
Email: sbarzaglia@pasteurorg.ru

PhD Student, Junior Researcher, Laboratory of Molecular Genetic Monitoring

Russian Federation, St. Petersburg

Valeriya A. Sbarzaglia

St. Petersburg Pasteur Institute

Email: sbarzaglia@pasteurorg.ru

PhD (Biology), Researcher, Laboratory of Molecular Genetic Monitoring

Russian Federation, St. Petersburg

A. S. Gladkikh

St. Petersburg Pasteur Institute

Email: sbarzaglia@pasteurorg.ru

PhD (Biology), Head of the Laboratory of Molecular Genetic Monitoring

Russian Federation, St. Petersburg

D. M. Milichkina

St. Petersburg Pasteur Institute

Email: sbarzaglia@pasteurorg.ru

Research Laboratory Assistant, Laboratory of Molecular Genetic Monitoring

Russian Federation, St. Petersburg

A. V. Bachevskaya

St. Petersburg Pasteur Institute

Email: sbarzaglia@pasteurorg.ru

Research Laboratory Assistant, Laboratory of Molecular Genetic Monitoring

Russian Federation, St. Petersburg

М. R. Popova

St. Petersburg Pasteur Institute

Email: sbarzaglia@pasteurorg.ru

PhD Student, Junior Researcher, Laboratory of Molecular Genetic Monitoring

Russian Federation, St. Petersburg

E. A. Cherepanova

Federal Hygienic and Epidemiological Center of Rospotrebnadzor

Email: sbarzaglia@pasteurorg.ru

Acting Deputy Head of the Epidemiological Surveillance Department

Russian Federation, Moscow

V. G. Dedkov

St. Petersburg Pasteur Institute; Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases

Email: sbarzaglia@pasteurorg.ru

PhD (Medicine), Deputy Director on Science, Leading Researcher

Russian Federation, St. Petersburg; Moscow

A. A. Totolian

St. Petersburg Pasteur Institute

Email: sbarzaglia@pasteurorg.ru

RAS Full Member, DSc (Medicine), Professor, Head of the Laboratory of Molecular Immunology, Director                                      

Russian Federation, St. Petersburg

References

  1. Киселева И.В., Ксенафонтов А.Д. Рино- и РС-вирусы в пандемию COVID-19 // Инфекция и иммунитет. 2022. Т. 12, № 5. C. 624–638. [Kiseleva I.V., Ksenafontov A.D. Rhino- and RS-viruses in the COVID-19 pandemic Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 4, pp. 624–638. (In Russ.)] doi: 10.15789/2220-7619-RAR-1826
  2. Кузнецов О.К. Условия, способствующие появлению вируса гриппа с пандемическим потенциалом. Профилактические меры // Эпидемиология и вакцинопрофилактика. 2003. № 3 (10). С. 5–12. [Kuznetsov O.K. The features of influenza vaccinal prevention. Epidemiologiya i vaktsinoprofilaktika = Epidemiology and Vaccine Prevention, 2003, no. 3 (10), pp. 5–12. (In Russ.)]
  3. Львов Д.К., Бурцева Е.И., Колобухина Л.В., Федякина И.Т., Бовин Н.В., Игнатьева А.В., Краснослободцев К.Г., Феодоритова Е.Л., Трушакова С.В., Бреслав Н.В., Меркулова Л.Н., Мукашева Е.А., Хлопова И.Н., Воронина О.Л., Аксенова Е.И., Кунда М.С., Рыжова Н.Н., Вартанян Н.В., Кистенева Л.Б., Кириллов И.М., Прошина Е.С., Росаткевич А.Г., Кружкова И.С., Заплатников А.Л., Базарова М.В., Сметанина С.В., Харламов М.В., Карпов Н.Л., Шихин А.В. Особенности циркуляции вирусов гриппа и ОРВИ в эпидемическом сезоне 2019–2020 гг. в отдельных регионах России // Вопросы вирусологии. 2020. Т. 65, № 6. С. 335–349. [L’vov D.K., Burtseva E.I., Kolobukhina L.V., Fedyakina I.T., Bovin N.V., Ignatjeva A.V., Krasnoslobodtsev K.G., Feodoritova E.L., Trushakova S.V., Breslav N.V., Merkulova L.N., Mukasheva E.A., Khlopova I.N, Voronina O.L., Aksyonova E.I., Kunda M.S., Ryzhova N.N., Vartanjan R.V., Kisteneva L.B., Kirillov I.M., Proshina E.S., Rosatkevich A.G., Kruzhkova I.S., Zaplatnikov A.L., Bazarova M.V., Smetanina S.V., Kharlamov М.V., Karpov N.L., Shikhin A.V. Peculiarities of the influenza and ARVI viruses during epidemic season 2019–2020 in some regions of Russia. Voprosy virusologii = Problems of Virology, 2020, vol. 65, no. 6, pp. 335–349 (In Russ.)]
  4. Писарева М.М., Едер В.А., Бузицкая Ж.В., Мусаева Т.Д., Афанасьева В.С., Го А.А., Образцова Е.А., Суховецкая В.Ф., Комиссаров А.Б. Этиологическая структура гриппа и других ОРВИ в Санкт-Петербурге в эпидемические сезоны 2012–2016 гг. // Вопросы вирусологии. 2018. Т. 63, № 5. С. 233–239. [Pisareva M.M., Eder V.A., Buzitskaya Zh.V., Musaeva T.D., Afanaseva V.S., Go A.A., Obraztsova E.A., Sukhovetskaya V.F., Komissarov A.B. Etiological structure of influenza and other ARVI in St. Petersburg during epidemic seasons 2012–2016. Voprosy virusologii = Problems of Virology, 2018, vol. 63, no. 5, pp. 233–239. (In Russ.)]
  5. Bai L., Zhao Y., Dong J., Liang S., Guo M., Liu X., Wang X., Huang Z., Sun X., Zhang Z., Dong L., Liu Q., Zheng Y., Niu D., Xiang M., Song K., Ye J., Zheng W., Tang Z., Tang M., Zhou Y., Shen C., Dai M., Zhou L., Chen Y., Yan H., Lan K., Xu K. Coinfection with influenza A virus enhances SARS-CoV-2 infectivity. Cell Res., 2021, vol. 31, no. 4, pp. 395–403. doi: 10.1038/s41422-021-00473-1
  6. Bedford T., Riley S., Barr I.G., Broor S., Chadha M., Cox N.J., Daniels R.S., Gunasekaran C.P., Hurt A.C., Kelso A., Klimov A., Lewis N.S., Li X., McCauley J.W., Odagiri T., Potdar V., Rambaut A., Shu Y., Skepner E., Smith D.J., Suchard M.A., Tashiro M., Wang D., Xu X., Lemey P., Russell C.A. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature, 2015, vol. 523, no. 7559, pp. 217–220. doi: 10.1038/nature14460
  7. Casalegno J.S., Ottmann M., Duchamp M.B., Escuret V., Billaud G., Frobert E., Morfin F., Lina B. Rhinoviruses delayed the circulation of the pandemic influenza A (H1N1) 2009 virus in France. Clin. Microbiol. Infect., 2010, vol. 16, no. 4, pp. 326–329. doi: 10.1111/j.1469-0691.2010.03167.x
  8. Chen R., Holmes E.C. The evolutionary dynamics of human influenza B virus. J. Mol. Evol., 2008, vol. 66, no. 6, pp. 655–663. doi: 10.1007/s00239-008-9119-z
  9. Country & Technical Guidance — Coronavirus disease (COVID-19). Geneva: World Health Organization, 2020. URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance-publications
  10. Domenech de Cellès M., Casalegno J.S., Lina B., Opatowski L. Estimating the impact of influenza on the epidemiological dynamics of SARS-CoV-2. Peer J., 2021 vol. 9: e12566. doi: 10.7717/peerj.12566
  11. Gladkikh A., Dedkov V., Sharova A., Klyuchnikova E., Sbarzaglia V., Arbuzova T., Forghani M., Ramsay E., Dolgova A., Shabalina A., Tsyganova N., Totolian A. Uninvited guest: arrival and dissemination of omicron lineage SARS-CoV-2 in St. Petersburg, Russia. Microorganisms, 2022, vol. 10, no. 8: 1676. doi: 10.3390/microorganisms10081676
  12. Gladkikh A., Dedkov V., Sharova A., Klyuchnikova E., Sbarzaglia V., Kanaeva O., Arbuzova T., Tsyganova N., Popova A., Ramsay E., Totolian A. Epidemiological Features of COVID-19 in Northwest Russia in 2021. Viruses, 2022, vol. 14, no. 5: 931. doi: 10.3390/v14050931
  13. Goncharova E.A., Dedkov V.G., Dolgova A.S., Kassirov I.S., Safonova M.V., Voytsekhovskaya Y., Totolian A.A. One-step quantitative RT-PCR assay with armored RNA controls for detection of SARS-CoV-2. J. Med. Virol., 2021, vol. 93, no. 3, pp. 1694–1701. doi: 10.1002/jmv.26540
  14. Linde A., Rotzén-Ostlund M., Zweygberg-Wirgart B., Rubinova S., Brytting M. Does viral interference affect spread of influenza? Euro Surveill., 2009, vol. 14, no. 40: 19354
  15. Lowen A.C., Mubareka S., Steel J., Palese P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog., 2007, vol. 3, no. 10, pp. 1470–1476. doi: 10.1371/journal.ppat.0030151
  16. Mak G.C., Wong A.H., Ho W.Y., Lim W. The impact of pandemic influenza A (H1N1) 2009 on the circulation of respiratory viruses 2009–2011. Influenza Other Respir Viruses, 2012, vol. 6, no. 3: e6-10. doi: 10.1111/j.1750-2659.2011.00323.x
  17. Olsen S.J., Azziz-Baumgartner E., Budd A.P., Brammer L., Sullivan S., Pineda R.F., Cohen C., Fry A.M. Decreased influenza activity during the COVID-19 pandemic-United States, Australia, Chile, and South Africa, 2020. Am. J. Transplant., 2020, vol. 20, no. 12, pp. 3681–3685. doi: 10.1111/ajt.16381
  18. Opatowski L., Baguelin M., Eggo R.M. Influenza interaction with cocirculating pathogens and its impact on surveillance, pathogenesis, and epidemic profile: a key role for mathematical modelling. PLoS Pathog., 2018, vol. 14, no. 2: e1006770. doi: 10.1371/journal.ppat.1006770
  19. Petrova V.N., Russell C.A. The evolution of seasonal influenza viruses. Nat. Rev. Microbiol., 2018, vol. 16, no. 1, pp. 47–60. doi: 10.1038/nrmicro.2017.118
  20. Smith D.J., Lapedes A.S., de Jong J.C., Bestebroer T.M., Rimmelzwaan G.F., Osterhaus A.D., Fouchier R.A. Mapping the antigenic and genetic evolution of influenza virus. Science, 2004, vol. 305, no. 5682, pp. 371–376. doi: 10.1126/science.1097211
  21. Soo R.J.J., Chiew C.J., Ma S., Pung R., Lee V. Decreased Influenza Incidence under COVID-19 Control Measures, Singapore. Emerg. Infect. Dis., 2020, vol. 26, no. 8, pp. 1933–1935. doi: 10.3201/eid2608.201229
  22. Stowe J., Tessier E., Zhao H., Guy R., Muller-Pebody B., Zambon M., Andrews N., Ramsay M., Lopez Bernal J. Interactions between SARS-CoV-2 and influenza, and the impact of coinfection on disease severity: a test-negative design. Int. J. Epidemiol., 2021, vol. 50, no. 4, pp. 1124–1133. doi: 10.1093/ije/dyab081
  23. Terajima M., Cruz J., Co M.D., Lee J.H., Kaur K., Wrammert J., Wilson P.C., Ennis F.A. Complement-dependent lysis of influenza a virus-infected cells by broadly cross-reactive human monoclonal antibodies. J. Virol., 2011, vol. 85, no. 24, pp. 13463–13467. doi: 10.1128/JVI.05193-11
  24. Vijaykrishna D., Holmes E.C., Joseph U., Fourment M., Su Y.C., Halpin R., Lee R.T., Deng Y.M., Gunalan V., Lin X., Stockwell T.B., Fedorova N.B., Zhou B., Spirason N., Kühnert D., Bošková V., Stadler T., Costa A.M., Dwyer D.E., Huang Q.S., Jennings L.C., Rawlinson W., Sullivan S.G., Hurt A.C., Maurer-Stroh S., Wentworth D.E., Smith G.J., Barr I.G. The contrasting phylodynamics of human influenza B viruses. Elife, 2015, vol. 4: e05055. doi: 10.7554/eLife.05055
  25. Wang M.H., Hu Z.X., Feng L.Z., Yu H.J., Yang J. [Epidemic trends and prevention and control of seasonal influenza in China after the COVID-19 pandemic]. Zhonghua Yi Xue Za Zhi., 2024, vol. 104, no. 8, pp. 559–565. (In Chinese). doi: 10.3760/cma.j.cn112137-20231220-01430
  26. WHO. Coronavirus disease (COVID-19) Epidemiological Updates and Monthly Operational Updates. URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (30.08.2024)
  27. WHO. Global Influenza Strategy 2019–2030. URL: https://www.who.int/publications/i/item/9789241515320 (07.01.2024)
  28. WHO. Influenza (Seasonal). URL: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) (20.12.2023)
  29. WHO. Statement on the fifteenth meeting of the IHR (2005) Emergency Committee on the COVID-19 pandemic. URL: https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic (15.03.2024)
  30. WHO. Up to 650 000 people die of respiratory diseases linked to seasonal flu each year. URL: https://www.who.int/news/item/13-12-2017-up-to-650-000-people-die-of-respiratory-diseases-linked-to-seasonal-flu-each-year (20.12.2023)
  31. Xie Y., Tian X., Zhang X., Yao H., Wu N. Immune interference in effectiveness of influenza and COVID-19 vaccination. Front. Immunol., 2023, no. 14: 1167214. doi: 10.3389/fimmu.2023.1167214

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Dynamics of ARVI incidence rate in Russia and the Northwestern Federal District during periods of circulation of various SARS-CoV-2 genovariants

Download (696KB)
3. Figure 2. Comparative data on incidence rate for influenza, ARVI and COVID-19 in the Northwestern Federal District in 2021–2022

Download (655KB)
4. Figure 3. Dynamics of influenza incidence in the Russian Federation and Northwestern Federal District in the epidemiological seasons 2021–2022 during COVID-19 associated with circulation of various SARS-CoV-2 genovariants

Download (686KB)
5. Figure 4. Retrospective assessment of ARVI pattern during the epidemic autumn-winter periods 2021–2022

Download (466KB)
6. Figure 5. Assessment of mono- and mixed infections in ARVI pattern in 2021–2022

Download (275KB)
7. Figure 6. Distribution of co-infection cases in SARS-CoV-2 positive patients

Download (462KB)

Copyright (c) 2024 Sharova A.A., Sbarzaglia V.A., Gladkikh A.S., Milichkina D.M., Bachevskaya A.V., Popova М.R., Cherepanova E.A., Dedkov V.G., Totolian A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».