Arvi pattern in the Northwest federal district during the COVID-19 pandemic (2021–2022)
- Authors: Sharova A.A.1, Sbarzaglia V.A.1, Gladkikh A.S.1, Milichkina D.M.1, Bachevskaya A.V.1, Popova М.R.1, Cherepanova E.A.2, Dedkov V.G.1,3, Totolian A.A.1
-
Affiliations:
- St. Petersburg Pasteur Institute
- Federal Hygienic and Epidemiological Center of Rospotrebnadzor
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases
- Issue: Vol 14, No 5 (2024)
- Pages: 917-926
- Section: ORIGINAL ARTICLES
- URL: https://journal-vniispk.ru/2220-7619/article/view/284797
- DOI: https://doi.org/10.15789/2220-7619-API-17644
- ID: 284797
Cite item
Full Text
Abstract
Acute respiratory viral infections still remain a pressing health problem, causing both seasonal outbreaks and epidemics and global pandemics. The emergence of a new coronavirus infection has become a serious challenge, resulting in more than 776 million cases of disease and more than 7 million deaths worldwide, which could not but affect the circulation of existing seasonal pathogens. This paper provides a retrospective analysis of the structure of acute respiratory viral infections during the height of the COVID-19 pandemic using the example of a single subject (Northwestern Federal District) in the autumn-winter periods of 2021–2022, presents the dynamics of the incidence of acute respiratory viral infections and influenza in Russia and the Northwestern Federal District, cases of co-infections were identified and analyzed. It is shown that between 2021 and 2022, the accession of a new coronavirus infection increased the overall incidence of respiratory viral infections until August 2022, and the decrease in COVID-19 incidence by the end of 2022 compared with the incidence of other respiratory viruses. ARVI pathogens that circulated during the COVID-19 pandemic were identified, namely: influenza A virus, adenoviruses, seasonal coronaviruses, rhinoviruses, bocaviruses, respiratory syncytial virus and type 3 parainfluenza virus. The results of the study showed that influenza A virus, bocaviruses and respiratory syncytial virus are more often detected as monoinfections and can influence the spread of other respiratory viruses. While adenoviruses, rhinoviruses and type 3 parainfluenza viruses are most often found in the form of co-infection with COVID-19, which creates an additional viral load in patients and can complicate the course of the disease.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
A. A. Sharova
St. Petersburg Pasteur Institute
Author for correspondence.
Email: sbarzaglia@pasteurorg.ru
PhD Student, Junior Researcher, Laboratory of Molecular Genetic Monitoring
Russian Federation, St. PetersburgValeriya A. Sbarzaglia
St. Petersburg Pasteur Institute
Email: sbarzaglia@pasteurorg.ru
PhD (Biology), Researcher, Laboratory of Molecular Genetic Monitoring
Russian Federation, St. PetersburgA. S. Gladkikh
St. Petersburg Pasteur Institute
Email: sbarzaglia@pasteurorg.ru
PhD (Biology), Head of the Laboratory of Molecular Genetic Monitoring
Russian Federation, St. PetersburgD. M. Milichkina
St. Petersburg Pasteur Institute
Email: sbarzaglia@pasteurorg.ru
Research Laboratory Assistant, Laboratory of Molecular Genetic Monitoring
Russian Federation, St. PetersburgA. V. Bachevskaya
St. Petersburg Pasteur Institute
Email: sbarzaglia@pasteurorg.ru
Research Laboratory Assistant, Laboratory of Molecular Genetic Monitoring
Russian Federation, St. PetersburgМ. R. Popova
St. Petersburg Pasteur Institute
Email: sbarzaglia@pasteurorg.ru
PhD Student, Junior Researcher, Laboratory of Molecular Genetic Monitoring
Russian Federation, St. PetersburgE. A. Cherepanova
Federal Hygienic and Epidemiological Center of Rospotrebnadzor
Email: sbarzaglia@pasteurorg.ru
Acting Deputy Head of the Epidemiological Surveillance Department
Russian Federation, MoscowV. G. Dedkov
St. Petersburg Pasteur Institute; Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases
Email: sbarzaglia@pasteurorg.ru
PhD (Medicine), Deputy Director on Science, Leading Researcher
Russian Federation, St. Petersburg; MoscowA. A. Totolian
St. Petersburg Pasteur Institute
Email: sbarzaglia@pasteurorg.ru
RAS Full Member, DSc (Medicine), Professor, Head of the Laboratory of Molecular Immunology, Director
Russian Federation, St. PetersburgReferences
- Киселева И.В., Ксенафонтов А.Д. Рино- и РС-вирусы в пандемию COVID-19 // Инфекция и иммунитет. 2022. Т. 12, № 5. C. 624–638. [Kiseleva I.V., Ksenafontov A.D. Rhino- and RS-viruses in the COVID-19 pandemic Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 4, pp. 624–638. (In Russ.)] doi: 10.15789/2220-7619-RAR-1826
- Кузнецов О.К. Условия, способствующие появлению вируса гриппа с пандемическим потенциалом. Профилактические меры // Эпидемиология и вакцинопрофилактика. 2003. № 3 (10). С. 5–12. [Kuznetsov O.K. The features of influenza vaccinal prevention. Epidemiologiya i vaktsinoprofilaktika = Epidemiology and Vaccine Prevention, 2003, no. 3 (10), pp. 5–12. (In Russ.)]
- Львов Д.К., Бурцева Е.И., Колобухина Л.В., Федякина И.Т., Бовин Н.В., Игнатьева А.В., Краснослободцев К.Г., Феодоритова Е.Л., Трушакова С.В., Бреслав Н.В., Меркулова Л.Н., Мукашева Е.А., Хлопова И.Н., Воронина О.Л., Аксенова Е.И., Кунда М.С., Рыжова Н.Н., Вартанян Н.В., Кистенева Л.Б., Кириллов И.М., Прошина Е.С., Росаткевич А.Г., Кружкова И.С., Заплатников А.Л., Базарова М.В., Сметанина С.В., Харламов М.В., Карпов Н.Л., Шихин А.В. Особенности циркуляции вирусов гриппа и ОРВИ в эпидемическом сезоне 2019–2020 гг. в отдельных регионах России // Вопросы вирусологии. 2020. Т. 65, № 6. С. 335–349. [L’vov D.K., Burtseva E.I., Kolobukhina L.V., Fedyakina I.T., Bovin N.V., Ignatjeva A.V., Krasnoslobodtsev K.G., Feodoritova E.L., Trushakova S.V., Breslav N.V., Merkulova L.N., Mukasheva E.A., Khlopova I.N, Voronina O.L., Aksyonova E.I., Kunda M.S., Ryzhova N.N., Vartanjan R.V., Kisteneva L.B., Kirillov I.M., Proshina E.S., Rosatkevich A.G., Kruzhkova I.S., Zaplatnikov A.L., Bazarova M.V., Smetanina S.V., Kharlamov М.V., Karpov N.L., Shikhin A.V. Peculiarities of the influenza and ARVI viruses during epidemic season 2019–2020 in some regions of Russia. Voprosy virusologii = Problems of Virology, 2020, vol. 65, no. 6, pp. 335–349 (In Russ.)]
- Писарева М.М., Едер В.А., Бузицкая Ж.В., Мусаева Т.Д., Афанасьева В.С., Го А.А., Образцова Е.А., Суховецкая В.Ф., Комиссаров А.Б. Этиологическая структура гриппа и других ОРВИ в Санкт-Петербурге в эпидемические сезоны 2012–2016 гг. // Вопросы вирусологии. 2018. Т. 63, № 5. С. 233–239. [Pisareva M.M., Eder V.A., Buzitskaya Zh.V., Musaeva T.D., Afanaseva V.S., Go A.A., Obraztsova E.A., Sukhovetskaya V.F., Komissarov A.B. Etiological structure of influenza and other ARVI in St. Petersburg during epidemic seasons 2012–2016. Voprosy virusologii = Problems of Virology, 2018, vol. 63, no. 5, pp. 233–239. (In Russ.)]
- Bai L., Zhao Y., Dong J., Liang S., Guo M., Liu X., Wang X., Huang Z., Sun X., Zhang Z., Dong L., Liu Q., Zheng Y., Niu D., Xiang M., Song K., Ye J., Zheng W., Tang Z., Tang M., Zhou Y., Shen C., Dai M., Zhou L., Chen Y., Yan H., Lan K., Xu K. Coinfection with influenza A virus enhances SARS-CoV-2 infectivity. Cell Res., 2021, vol. 31, no. 4, pp. 395–403. doi: 10.1038/s41422-021-00473-1
- Bedford T., Riley S., Barr I.G., Broor S., Chadha M., Cox N.J., Daniels R.S., Gunasekaran C.P., Hurt A.C., Kelso A., Klimov A., Lewis N.S., Li X., McCauley J.W., Odagiri T., Potdar V., Rambaut A., Shu Y., Skepner E., Smith D.J., Suchard M.A., Tashiro M., Wang D., Xu X., Lemey P., Russell C.A. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature, 2015, vol. 523, no. 7559, pp. 217–220. doi: 10.1038/nature14460
- Casalegno J.S., Ottmann M., Duchamp M.B., Escuret V., Billaud G., Frobert E., Morfin F., Lina B. Rhinoviruses delayed the circulation of the pandemic influenza A (H1N1) 2009 virus in France. Clin. Microbiol. Infect., 2010, vol. 16, no. 4, pp. 326–329. doi: 10.1111/j.1469-0691.2010.03167.x
- Chen R., Holmes E.C. The evolutionary dynamics of human influenza B virus. J. Mol. Evol., 2008, vol. 66, no. 6, pp. 655–663. doi: 10.1007/s00239-008-9119-z
- Country & Technical Guidance — Coronavirus disease (COVID-19). Geneva: World Health Organization, 2020. URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance-publications
- Domenech de Cellès M., Casalegno J.S., Lina B., Opatowski L. Estimating the impact of influenza on the epidemiological dynamics of SARS-CoV-2. Peer J., 2021 vol. 9: e12566. doi: 10.7717/peerj.12566
- Gladkikh A., Dedkov V., Sharova A., Klyuchnikova E., Sbarzaglia V., Arbuzova T., Forghani M., Ramsay E., Dolgova A., Shabalina A., Tsyganova N., Totolian A. Uninvited guest: arrival and dissemination of omicron lineage SARS-CoV-2 in St. Petersburg, Russia. Microorganisms, 2022, vol. 10, no. 8: 1676. doi: 10.3390/microorganisms10081676
- Gladkikh A., Dedkov V., Sharova A., Klyuchnikova E., Sbarzaglia V., Kanaeva O., Arbuzova T., Tsyganova N., Popova A., Ramsay E., Totolian A. Epidemiological Features of COVID-19 in Northwest Russia in 2021. Viruses, 2022, vol. 14, no. 5: 931. doi: 10.3390/v14050931
- Goncharova E.A., Dedkov V.G., Dolgova A.S., Kassirov I.S., Safonova M.V., Voytsekhovskaya Y., Totolian A.A. One-step quantitative RT-PCR assay with armored RNA controls for detection of SARS-CoV-2. J. Med. Virol., 2021, vol. 93, no. 3, pp. 1694–1701. doi: 10.1002/jmv.26540
- Linde A., Rotzén-Ostlund M., Zweygberg-Wirgart B., Rubinova S., Brytting M. Does viral interference affect spread of influenza? Euro Surveill., 2009, vol. 14, no. 40: 19354
- Lowen A.C., Mubareka S., Steel J., Palese P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog., 2007, vol. 3, no. 10, pp. 1470–1476. doi: 10.1371/journal.ppat.0030151
- Mak G.C., Wong A.H., Ho W.Y., Lim W. The impact of pandemic influenza A (H1N1) 2009 on the circulation of respiratory viruses 2009–2011. Influenza Other Respir Viruses, 2012, vol. 6, no. 3: e6-10. doi: 10.1111/j.1750-2659.2011.00323.x
- Olsen S.J., Azziz-Baumgartner E., Budd A.P., Brammer L., Sullivan S., Pineda R.F., Cohen C., Fry A.M. Decreased influenza activity during the COVID-19 pandemic-United States, Australia, Chile, and South Africa, 2020. Am. J. Transplant., 2020, vol. 20, no. 12, pp. 3681–3685. doi: 10.1111/ajt.16381
- Opatowski L., Baguelin M., Eggo R.M. Influenza interaction with cocirculating pathogens and its impact on surveillance, pathogenesis, and epidemic profile: a key role for mathematical modelling. PLoS Pathog., 2018, vol. 14, no. 2: e1006770. doi: 10.1371/journal.ppat.1006770
- Petrova V.N., Russell C.A. The evolution of seasonal influenza viruses. Nat. Rev. Microbiol., 2018, vol. 16, no. 1, pp. 47–60. doi: 10.1038/nrmicro.2017.118
- Smith D.J., Lapedes A.S., de Jong J.C., Bestebroer T.M., Rimmelzwaan G.F., Osterhaus A.D., Fouchier R.A. Mapping the antigenic and genetic evolution of influenza virus. Science, 2004, vol. 305, no. 5682, pp. 371–376. doi: 10.1126/science.1097211
- Soo R.J.J., Chiew C.J., Ma S., Pung R., Lee V. Decreased Influenza Incidence under COVID-19 Control Measures, Singapore. Emerg. Infect. Dis., 2020, vol. 26, no. 8, pp. 1933–1935. doi: 10.3201/eid2608.201229
- Stowe J., Tessier E., Zhao H., Guy R., Muller-Pebody B., Zambon M., Andrews N., Ramsay M., Lopez Bernal J. Interactions between SARS-CoV-2 and influenza, and the impact of coinfection on disease severity: a test-negative design. Int. J. Epidemiol., 2021, vol. 50, no. 4, pp. 1124–1133. doi: 10.1093/ije/dyab081
- Terajima M., Cruz J., Co M.D., Lee J.H., Kaur K., Wrammert J., Wilson P.C., Ennis F.A. Complement-dependent lysis of influenza a virus-infected cells by broadly cross-reactive human monoclonal antibodies. J. Virol., 2011, vol. 85, no. 24, pp. 13463–13467. doi: 10.1128/JVI.05193-11
- Vijaykrishna D., Holmes E.C., Joseph U., Fourment M., Su Y.C., Halpin R., Lee R.T., Deng Y.M., Gunalan V., Lin X., Stockwell T.B., Fedorova N.B., Zhou B., Spirason N., Kühnert D., Bošková V., Stadler T., Costa A.M., Dwyer D.E., Huang Q.S., Jennings L.C., Rawlinson W., Sullivan S.G., Hurt A.C., Maurer-Stroh S., Wentworth D.E., Smith G.J., Barr I.G. The contrasting phylodynamics of human influenza B viruses. Elife, 2015, vol. 4: e05055. doi: 10.7554/eLife.05055
- Wang M.H., Hu Z.X., Feng L.Z., Yu H.J., Yang J. [Epidemic trends and prevention and control of seasonal influenza in China after the COVID-19 pandemic]. Zhonghua Yi Xue Za Zhi., 2024, vol. 104, no. 8, pp. 559–565. (In Chinese). doi: 10.3760/cma.j.cn112137-20231220-01430
- WHO. Coronavirus disease (COVID-19) Epidemiological Updates and Monthly Operational Updates. URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (30.08.2024)
- WHO. Global Influenza Strategy 2019–2030. URL: https://www.who.int/publications/i/item/9789241515320 (07.01.2024)
- WHO. Influenza (Seasonal). URL: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) (20.12.2023)
- WHO. Statement on the fifteenth meeting of the IHR (2005) Emergency Committee on the COVID-19 pandemic. URL: https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic (15.03.2024)
- WHO. Up to 650 000 people die of respiratory diseases linked to seasonal flu each year. URL: https://www.who.int/news/item/13-12-2017-up-to-650-000-people-die-of-respiratory-diseases-linked-to-seasonal-flu-each-year (20.12.2023)
- Xie Y., Tian X., Zhang X., Yao H., Wu N. Immune interference in effectiveness of influenza and COVID-19 vaccination. Front. Immunol., 2023, no. 14: 1167214. doi: 10.3389/fimmu.2023.1167214
Supplementary files
