Biosynthesis of novel MnO2 nanocapsules via C. spinosa extract and honeybee-derived chitosan: exploring antibacterial and anticancer properties
- Authors: Elharrif M.G.1, Hassan N.A.2, Sharaf M.3,4
-
Affiliations:
- Shaqra University
- Chemical Industries Research Institute, National Research Centre
- AL-Azhar University
- Ocean University of China
- Issue: Vol 14, No 5 (2024)
- Pages: 1002-1016
- Section: ORIGINAL ARTICLES
- URL: https://journal-vniispk.ru/2220-7619/article/view/284832
- DOI: https://doi.org/10.15789/2220-7619-BON-17582
- ID: 284832
Cite item
Full Text
Abstract
This investigation delves into the integration of Capparis spinosa extract (CSLe) onto manganese dioxide nanoparticles (MnO2NPs) and chitosan derived from honeybees (CSH) in a nanostructured configuration. The resultant nanocomposites, namely CSLe@MnO2NPs and CSH/CSLe@MnO2NPs, underwent thorough characterization through various analytical techniques. UV-Vis spectroscopy unveiled distinctive features, such as ligand-to-metal charge transfer and photoluminescence, affirming the successful chitosan-functionalization of the MnO2NPs, thereby differentiating them from their pristine counterparts. FTIR spectra corroborated the binding of chitosan and identified crucial molecular functional groups. SEM-EDX analysis revealed the morphological properties, addressing non-uniform sizes in the as-calcined MnO2NPs by the uniform coating of CSH on CSLe@MnO2NPs, while EDX confirmed the presence of essential elements. TEM and SAED provided insights into the spherical morphology, crystalline structure, and lattice planes of these nanoparticles. Size distribution measurements highlighted distinctions between CSLe@MnO2NPs and CSH/CSLe@MnO2NPs. The nanomaterials underwent evaluation for their antimicrobial properties against a spectrum of Gram-negative and Gram-positive bacterial strains, with CSH/CSLe@MnO2NPs exhibiting the highest bactericidal activity. Additionally, they demonstrated low minimum inhibitory concentration (MIC) values, especially against S. aureus (MIC as low as 12.5 µg/ml). Their efficacy extended to anti-biofilm formation, significantly diminishing biofilm development in a dose-dependent manner, a pivotal factor in addressing biofilm-related infections. The study also scrutinized their cytotoxicity against normal Vero and PC3 prostate cancer cells, revealing potential anticancer properties. Dose-dependent reductions in cell viability were observed for both normal and cancer cells. In conclusion, these findings underscore the versatility and promise of CSH/CSLe@MnO2NPs in diverse biomedical applications, including antibacterial, anti-biofilm, and anticancer therapies.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Mohamed Gamal Elharrif
Shaqra University
Author for correspondence.
Email: al_harrif@yahoo.com
PhD, Department of Basic Medical Sciences, College of Medicine
Saudi Arabia, ShaqraN. A. Hassan
Chemical Industries Research Institute, National Research Centre
Email: al_harrif@yahoo.com
PhD, Synthetic Unit, Department of Photochemistry
Egypt, CairoM. Sharaf
AL-Azhar University; Ocean University of China
Email: al_harrif@yahoo.com
PhD, Department of Biochemistry and Molecular Biology
Egypt, Nasr City, Cairo; Qingdao, PR ChinaReferences
- Abd-ElGawad A.M., El-Amier Y.A., Assaeed A.M., Al-Rowaily S.L. Interspecific variations in the habitats of Reichardia tingitana (L.) Roth leading to changes in its bioactive constituents and allelopathic activity. Saudi J. Biol. Sci., 2020, vol. 27, no. 1, pp. 489–499. doi: 10.1016/j.sjbs.2019.11.015
- Alqahtani A.S., Nasr F.A., Ahmed M.Z., Bin Mansour M.Y., Biksmawi A.A., Noman O.M., Herqash R.N., Al-zharani M., Qurtam A.A., Rudayni H.A.J.O.C. In vitro protective and anti-inflammatory effects of Capparis spinosa and its flavonoids profile. Open Chemistry, 2023, vol. 21, no. 1: 20230186. doi: 10.1515/chem-2023-0186
- Alshawwa S.Z., Mohammed E.J., Hashim N., Sharaf M., Selim S., Alhuthali H.M., Alzahrani H.A., Mekky A.E., Elharrif M.G. In Situ Biosynthesis of Reduced Alpha Hematite (α-Fe2O3) Nanoparticles by Stevia Rebaudiana L. Leaf Extract: Insights into Antioxidant, Antimicrobial, and Anticancer Properties. Antibiotics (Basel), 2022, vol. 11, no. 9: 1252. doi: 10.3390/antibiotics11091252
- Arif M., Sharaf M., Samreen, Khan S., Chi Z., Liu C.G. Chitosan-based nanoparticles as delivery-carrier for promising antimicrobial glycolipid biosurfactant to improve the eradication rate of Helicobacter pylori biofilm. J. Biomater. Sci. Polym. Ed., 2021, vol. 32, no. 6, pp. 813–832. doi: 10.1080/09205063.2020.1870323
- Azhir E., Etefagh R., Mashreghi M., Pordeli P.J.P.C.R. Preparation, characterization and antibacterial activity of manganese oxide nanoparticles. Physical Chemistry Research, 2015, vol. 3, no. 3, pp. 197–204.
- Bakour M., Campos M.d.G., Imtara H., Lyoussi B. Antioxidant content and identification of phenolic/flavonoid compounds in the pollen of fourteen plants using HPLC-DAD. Journal of Apicultural Research, 2020, vol. 59, no. 1, pp. 35–41.
- Bilal M., Zhao Y., Rasheed T., Ahmed I., Hassan S.T.S., Nawaz M.Z., Iqbal H.M.N. Biogenic Nanoparticle–Chitosan Conjugates with Antimicrobial, Antibiofilm, and Anticancer Potentialities: Development and Characterization. Int. J. Environ. Res. Public Health, 2019, vol. 16, no. 4: 598. doi: 10.3390/ijerph16040598
- Ceriello A. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes, 2005, vol. 54, no. 1, pp. 1–7. doi: 10.2337/diabetes.54.1.1
- Chandrasekaran R., Gnanasekar S., Seetharaman P., Keppanan R., Arockiaswamy W., Sivaperumal S. Formulation of Carica papaya latex-functionalized silver nanoparticles for its improved antibacterial and anticancer applications. J. Mol. Liq., 2016, vol. 219, pp. 232–238.
- Cushnie T.P., Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, vol. 26, no. 5, pp. 343–356. doi: 10.1016/j.ijantimicag.2005.09.002
- Danaei M., Dehghankhold M., Ataei S., Hasanzadeh Davarani F., Javanmard R., Dokhani A., Khorasani S., Mozafari M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 2018, vol. 10, no. 2: 57. doi: 10.3390/pharmaceutics10020057
- Dang T.-D., Cheney M.A., Qian S., Joo S.W., Min B.-K. A novel rapid one-step synthesis of manganese oxide nanoparticles at room temperature using poly (dimethylsiloxane). Ind. Eng. Chem. Res., 2013, vol. 52, no. 7, pp. 2750–2753.
- Eaton P., Fernandes J.C., Pereira E., Pintado M.E., Xavier Malcata F. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy, 2008, vol. 108, no. 10, pp. 1128–1134. doi: 10.1016/j.ultramic.2008.04.015
- El Rabey H.A., Almutairi F.M., Alalawy A.I., Al-Duais M.A., Sakran M.I., Zidan N.S., Tayel A.A. Augmented control of drug-resistant Candida spp. via fluconazole loading into fungal chitosan nanoparticles. Int. J. Biol. Macromol., 2019, vol. 141, pp. 511–516. doi: 10.1016/j.ijbiomac.2019.09.036
- Elgadir M.A., Uddin M.S., Ferdosh S., Adam A., Chowdhury A.J.K., Sarker M.Z.I. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J. Food. Drug Anal., 2015, vol. 23, no. 4, pp. 619–629. doi: 10.1016/j.jfda.2014.10.008
- Elnosary M.E., Aboelmagd H.A., Habaka M.A., Salem S.R., El-Naggar M.E. Synthesis of bee venom loaded chitosan nanoparticles for anti-MERS-COV and multi-drug resistance bacteria. Int. J. Biol. Macromol., 2023, vol. 224, pp. 871–880. doi: 10.1016/j.ijbiomac.2022.10.173
- Fu P.P., Xia Q., Hwang H.M., Ray P.C., Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food. Drug Anal., 2014, vol. 22, no. 1, pp. 64–75. doi: 10.1016/j.jfda.2014.01.005
- Gan Q., Wang T. Chitosan nanoparticle as protein delivery carrier — systematic examination of fabrication conditions for efficient loading and release. Colloids Surf. B Biointerfaces, 2007, vol. 59, no. 1, pp. 24–34. doi: 10.1016/j.colsurfb.2007.04.009
- Harrigan W.F., McCance M.E. Laboratory methods in food and dairy microbiology. Academic Press Inc. (London) Ltd., 1976.
- Hoseinpour V., Ghaemi N. Novel ZnO–MnO2–Cu2O triple nanocomposite: facial synthesis, characterization, antibacterial activity and visible light photocatalytic performance for dyes degradation — a comparative study. Materials Research Express, 2018, vol. 5, no. 8: 085012.
- Ingale A.G., Chaudhari A.N. Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J. Nanomed. Nanotechol., 2013, vol. 4, no. 165, pp. 1–7. doi: 10.4172/2157-7439.1000165
- Jaganyi D., Altaf M., Wekesa I. Synthesis and characterization of whisker-shaped MnO2 nanostructure at room temperature. Appl. Nanosci., 2013, vol. 3, pp. 329–333. doi: 10.1007/s13204-012-0135-3
- Jayandran M., Muhamed haneefa M., Balasubramanian V. Green synthesis and characterization of Manganese nanoparticles using natural plant extracts and its evaluation of antimicrobial activity. J. App. Pharm. Sci., 2015, vol. 5, no. 12, pp. 105–110. doi: 10.7324/JAPS.2015.501218
- Jeyaraj M., Sathishkumar G., Sivanandhan G., MubarakAli D., Rajesh M., Arun R., Kapildev G., Manickavasagam M., Thajuddin N., Premkumar K., Ganapathi A. Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf. B Biointerfaces, 2013, vol. 106, pp. 86–92. doi: 10.1016/j.colsurfb.2013.01.027
- Joshi N.C., Joshi E., Singh A. Biological Synthesis, Characterisations and Antimicrobial activities of manganese dioxide (MnO2) nanoparticles. Research J. Pharm. and Tech., 2020, vol. 13, no. 1, pp. 135–140.
- Joshi N.C., Siddiqui F., Salman M., Singh A. Antibacterial Activity, Characterizations, and Biological Synthesis of Manganese Oxide Nanoparticles using the Extract of Aloe vera. Asian Pac. J. Health Sci., 2020, vol. 7, no. 3, pp. 27–29. doi: 10.21276/apjhs.2020.7.3.7
- Kant R., Pathak S., Dutta V. Design and fabrication of sandwich-structured α-Fe2O3/Au/ZnO photoanode for photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 2018, vol. 178, pp. 38–45. doi: 10.1016/j.solmat.2018.01.005
- Khan S.A., Shahid S., Shahid B., Fatima U., Abbasi S.A. Green Synthesis of MnO Nanoparticles Using Abutilon indicum Leaf Extract for Biological, Photocatalytic, and Adsorption Activities. Biomolecules, 2020, vol. 10, no. 5: 785. doi: 10.3390/biom10050785
- Khanna P., Ong C., Bay B.H., Baeg G.H. Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials (Basel), 2015, vol. 5, no. 3, pp. 1163–1180. doi: 10.3390/nano5031163
- Khaydarova H.A., Ikhtiyarova G.A., Khaydarova A.A. Method of obtaining a chitosan aminopolisaccharide from behbat Apis Mellifera. Journal of Chemistry Kazakistan, 2019, no. 2, pp. 69–74.
- Khomsi M.E., Imtara H., Kara M., Hmamou A., Assouguem A., Bourkhiss B., Tarayrah M., AlZain M.N., Alzamel N.M., Noman O., Hmouni D. Antimicrobial and Antioxidant Properties of Total Polyphenols of Anchusa italica Retz. Molecules, 2022, vol. 27, no. 2: 416. doi: 10.3390/molecules27020416
- Kravanja G., Primožič M., Knez Ž., Leitgeb M. Chitosan-based (Nano)materials for Novel Biomedical Applications. Molecules, 2019, vol. 24, no. 10: 1960. doi: 10.3390/molecules24101960
- Kulkarni A.P., Srivastava A.A., Nagalgaon R.K., Zunjarrao R.S. Phytofabrication of Silver Nanoparticles from a Novel Plant Source and Its Application. International Journal of Biological & Pharmaceutical Research, 2012, no. 3, pp. 417–421.
- Kumar G.S., Venkataramana B., Reddy S.A., Maseed H., Nagireddy R.R. Hydrothermal synthesis of Mn3O4 nanoparticles by evaluation of pH effect on particle Size formation and its antibacterial activity. Adv. Nat. Sci. Nanosci. Nanotechnol., 2020, no. 11: 035006. doi: 10.1088/2043-6254/ab9cac
- Kunkalekar R. Role of oxides (Fe3O4, MnO2) in the antibacterial action of Ag-metal oxide hybrid nanoparticles. Noble Metal-Metal Oxide Hybrid Nanoparticles. Elsevier, 2019, pp. 303–312.
- Li Y., Liu J., Wang L., Zhang J., Wang Z., Gao Z., Zhong Y., Zhang D. Notice of Retraction: Preparation and Characterization of Mn0.5Zn0.5Fe2O4@Au Composite Nanoparticles and Its Anti-Tumor Effect on Hepatocellular Carcinoma Cells. 5th International Conference on Bioinformatics and Biomedical Engineering. Wuhan, China, 2011, pp. 1–4. doi: 10.1109/icbbe.2011.5781653
- Lotfy V.F., Basta A.H. A green approach to the valorization of kraft lignin for the production of nanocomposite gels to control the release of fertilizer. Biofuels, Bioproducts and Biorefining, 2022, vol. 16, no. 2, pp. 488–498. doi: 10.1002/bbb.2317
- Lu H., Zhang X., Khan S.A., Li W., Wan L. Biogenic Synthesis of MnO2 Nanoparticles With Leaf Extract of Viola betonicifolia for Enhanced Antioxidant, Antimicrobial, Cytotoxic, and Biocompatible Applications. Front. Microbiol., 2021, no. 12: 761084. doi: 10.3389/fmicb.2021.761084
- Majani S.S., Sathyan S., Manoj M.V., Vinod N., Pradeep S., Shivamallu C., Venkatachalaiah K., Kollur S.P. Eco-friendly synthesis of MnO2 nanoparticles using Saraca asoca leaf extract and evaluation of in vitro anticancer activity. Current Research in Green and Sustainable Chemistry, 2023, vol. 6: 100367. doi: 10.1016/j.crgsc.2023.100367
- Manjula R., Thenmozhi M., Thilagavathi S., Srinivasan R., Kathirvel A. Green synthesis and characterization of manganese oxide nanoparticles from Gardenia resinifera leaves. Materials Today: Proceedings, 2020, vol. 26, pp. 3559–3563. doi: 10.1016/j.matpr.2019.07.396
- Manke A., Wang L., Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed. Res. Int., 2013, no. 2013: 942916. doi: 10.1155/2013/942916
- Marchand G., Fabre G., Maldonado-Carmona N., Villandier N., Leroy-Lhez S. Acetylated lignin nanoparticles as a possible vehicle for photosensitizing molecules. Nanoscale Adv., 2020, vol. 2, no. 12, pp. 5648–5658. doi: 10.1039/d0na00615g
- Mohamed D.I., Alaa El-Din Aly El-Waseef D., Nabih E.S., El-Kharashi O.A., Abd El-Kareem H.F., Abo Nahas H.H., Abdel-Wahab B.A., Helmy Y.A., Alshawwa S.Z., Saied E.M. Acetylsalicylic Acid Suppresses Alcoholism-Induced Cognitive Impairment Associated with Atorvastatin Intake by Targeting Cerebral miRNA155 and NLRP3: In Vivo, and In Silico Study. Pharmaceutics, 2022, vol. 14, no. 3: 529. doi: 10.3390/pharmaceutics14030529
- Mohamed D.I., Ezzat S.F., Elayat W.M., El-Kharashi O.A., El-Kareem H.F.A., Nahas H.H.A., Abdel-Wahab B.A., Alshawwa S.Z., Saleh A., Helmy Y.A., Khairy E., Saied E.M. Hepatoprotective Role of Carvedilol against Ischemic Hepatitis Associated with Acute Heart Failure via Targeting miRNA-17 and Mitochondrial Dynamics-Related Proteins: An In Vivo and In Silico Study. Pharmaceuticals (Basel), 2022, vol. 15, no. 7: 832. doi: 10.3390/ph15070832
- Moon S.A., Salunke B.K., Alkotaini B., Sathiyamoorthi E., Kim B.S. Biological synthesis of manganese dioxide nanoparticles by Kalopanax pictus plant extract. IET Nanobiotechnol., 2015, vol. 9, no. 4, pp. 220–5. doi: 10.1049/iet-nbt.2014.0051
- Morena A.G., Stefanov I., Ivanova K., Perez-Rafael S.l., Sanchez-Soto M., Tzanov T. Antibacterial polyurethane foams with incorporated lignin-capped silver nanoparticles for chronic wound treatment. Industrial & Engineering Chemistry Research, 2020, vol. 59, no. 10, pp. 4504–4514.
- Neamah S.A., Albukhaty S., Falih I.Q., Dewir Y.H., Mahood H.B. Biosynthesis of Zinc Oxide Nanoparticles Using Capparis spinosa L. Fruit Extract: Characterization, Biocompatibility, and Antioxidant Activity. Appl. Sci., 2023, vol. 13, no. 11: 6604. doi: 10.1016/B978-0-12-822446-5.00010-1
- Özçelik B., Orhan D.D., Özgen S., Ergun F. Antimicrobial activity of flavonoids against extended-spectrum β-lactamase (ESβL)-producing Klebsiella pneumoniae. Tropical Journal of Pharmaceutical Research, 2008, vol. 7, no. 4, pp. 1151–1157. doi: 10.4314/tjpr.v7i4.14701
- Pagar T., Ghotekar S., Pagar K., Pansambal S., Oza R. Phytogenic synthesis of manganese dioxide nanoparticles using plant extracts and their biological application. Handbook of Greener Synthesis of Nanomaterials and Compounds. Elsevier: 2021, pp. 209–218. doi: 10.3390/app13116604
- Piao M.J., Kang K.A., Lee I.K., Kim H.S., Kim S., Choi J.Y., Choi J., Hyun J.W. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett., 2011, vol. 201, no. 1, pp. 92–100. doi: 10.1016/j.toxlet.2010.12.010
- Procop G.W., Church D.L., Hall G.S., Janda W.M. Koneman’s color atlas and textbook of diagnostic microbiology. Jones & Bartlett Publishers, 2020. 1830 p.
- Qi L.F., Xu Z.R., Li Y., Jiang X., Han X.Y. In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World J. Gastroenterol., 2005, vol. 11, no. 33, pp. 5136–5141. doi: 10.3748/wjg.v11.i33.5136
- Raza M.A., Mukhtar F., Danish M. Cuscuta reflexa and Carthamus Oxyacantha: potent sources of alternative and complimentary drug. Springerplus, 2015, no. 4: 76. doi: 10.1186/s40064-015-0854-5
- Razanamahandry L.C., Onwordi C.T., Saban W., Bashir A.K.H., Mekuto L., Malenga E., Manikandan E., Fosso-Kankeu E., Maaza M., Ntwampe S.K.O. Performance of various cyanide degrading bacteria on the biodegradation of free cyanide in water. J. Hazard Mater., 2019, no. 380: 120900. doi: 10.1016/j.jhazmat.2019.120900
- Ríos J.L., Recio M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol., 2005, vol. 100, no. 1–2, pp. 80–84. doi: 10.1016/j.jep.2005.04.025
- Sankar Ganesh P., Ravishankar Rai V. Attenuation of quorum-sensing-dependent virulence factors and biofilm formation by medicinal plants against antibiotic resistant Pseudomonas aeruginosa. J. Tradit. Complement. Med., 2017, vol. 8, no. 1, pp. 170–177. doi: 10.1016/j.jtcme.2017.05.008
- Saod W.M., Hamid L.L., Alaallah N.J., Ramizy A. Biosynthesis and antibacterial activity of manganese oxide nanoparticles prepared by green tea extract. Biotechnol. Rep. (Amst), 2022, vol. 34: e00729. doi: 10.1016/j.btre.2022.e00729
- Selim M.S., Fatthallah N.A., Higazy S.A., Chen X., Hao Z. Novel blade-like structure of reduced graphene oxide/α-Mn2O3 nanocomposite as an antimicrobial active agent against aerobic and anaerobic bacteria. Materials Chemistry and Physics, 2023, no. 298: 127436. doi: 10.1016/j.matchemphys.2023.127436
- Selim M.S., Hamouda H., Hao Z., Shabana S., Chen X. Design of γ-AlOOH, γ-MnOOH, and α-Mn2O3 nanorods as advanced antibacterial active agents. Dalton Trans., 2020, vol. 49, no. 25, pp. 8601–8613. doi: 10.1039/d0dt01689f
- Severino R., Ferrari G., Vu K.D., Donsì F., Salmieri S., Lacroix M. Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157: H7 and Salmonella Typhimurium on green beans. Food Control, 2015, vol. 50, pp. 215–222. doi: 10.1016/j.foodcont.2014.08.029
- Shahid S.A., Anwar F., Shahid M., Majeed N., Azam A., Bashir M., Amin M., Mahmood Z., Shakir I. Laser-Assisted synthesis of Mn0.50Zn0.50Fe2O4 nanomaterial: characterization and in vitro inhibition activity towards bacillus subtilis biofilm. Journal of Nanomaterials, 2015, vol. 16, no. 1: 111. doi: 10.1155/2015/896185
- Sharaf M., Sewid A.H., Hamouda H.I., Elharrif M.G., El-Demerdash A.S., Alharthi A., Hashim N., Hamad A.A., Selim S., Alkhalifah D.H.M., Hozzein W.N., Abdalla M., Saber T. Rhamnolipid-Coated Iron Oxide Nanoparticles as a Novel Multitarget Candidate against Major Foodborne E. coli Serotypes and Methicillin-Resistant S. aureus. Microbiol. Spectr., 2022, vol. 10, no. 4: e0025022. doi: 10.1128/spectrum.00250-22
- Sharma G., Kumar A., Naushad M., García-Peñas A., Al-Muhtaseb A.H., Ghfar A.A., Sharma V., Ahamad T., Stadler F.J. Fabrication and characterization of Gum arabic-cl-poly(acrylamide) nanohydrogel for effective adsorption of crystal violet dye. Carbohydr. Polym., 2018, vol. 202, pp. 444–453. doi: 10.1016/j.carbpol.2018.09.004
- Silva L.P. da, de Britto D., Seleghim M.H.R., Assis O.B.G. In vitro activity of water-soluble quaternary chitosan chloride salt against E. coli. World Journal of Microbiology and Biotechnology, 2010, vol. 26, no. 11, pp. 2089–2092.
- Souri M., Hoseinpour V., Shakeri A., Ghaemi N. Optimisation of green synthesis of MnO nanoparticles via utilising response surface methodology. IET Nanobiotechnol., 2018, vol. 12, no. 6, pp. 822–827. doi: 10.1049/iet-nbt.2017.0145
- Srinivasa C., Kumar S.R.S., Pradeep S., Prasad S.K., Veerapur R., Ansari M.A., Alomary M.N., Alghamdi S., Almehmadi M., Gc K., Daphedar A.B., Kakkalameli S.B., Shivamallu C., Kollur S.P. Eco-Friendly Synthesis of MnO2 Nanorods Using Gmelina arborea Fruit Extract and Its Anticancer Potency Against MCF-7 Breast Cancer Cell Line. Int. J. Nanomedicine, 2022, vol. 17, pp. 901–907. doi: 10.2147/IJN.S335848
- Sun S.-N., Li M.-F., Yuan T.-Q., Xu F., Sun R.-C. Effect of ionic liquid/organic solvent pretreatment on the enzymatic hydrolysis of corncob for bioethanol production. Part 1: Structural characterization of the lignins. Industrial Crops and Products, 2013, vol. 43, pp. 570–577. doi: 10.1016/j.indcrop.2012.07.074
- Suzuki S., Miyayama M. Structural Distortion in MnO2 Nanosheets and Its Suppression by Cobalt Substitution. Nanomaterials (Basel), 2017, vol. 7, no. 10: 295. doi: 10.3390/nano7100295
- Svirska S., Grytsyk A.Investigation of tannins in Anchusa officinalis L. Pharma Innovation, 2018, vol. 7, no. 4, pp. 758–761.
- Taleb F., Ammar M., Mosbah M.B., Salem R.B., Moussaoui Y. Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption. Sci. Rep., 2020, vol. 10, no. 1: 11048. doi: 10.1038/s41598-020-68047-6
- Vashistha V.K., Gautam S., Bala R., Kumar A., Das D.K. Transition Metal-Based Nanoparticles as Potential Antimicrobial Agents. Reviews and Advances in Chemistry, 2022, vol. 12, no. 4, pp. 222–247.
- Xia H.-Y., Li B.-Y., Zhao Y., Han Y.-H., Wang S.-B., Chen A.-Z., Kankala R.K. Nanoarchitectured manganese dioxide (MnO2)-based assemblies for biomedicine. Coordination Chemistry Reviews, 2022, vol. 464: 214540. doi: 10.1016/j.ccr.2022.214540
- Zhang H., Ma Z.F. Phytochemical and Pharmacological Properties of Capparis spinosa as a Medicinal Plant. Nutrients, 2018, vol. 10, no. 2: 116. doi: 10.3390/nu10020116
Supplementary files
