Biosynthesis of novel MnO2 nanocapsules via C. spinosa extract and honeybee-derived chitosan: exploring antibacterial and anticancer properties

Cover Page

Cite item

Full Text

Abstract

This investigation delves into the integration of Capparis spinosa extract (CSLe) onto manganese dioxide nanoparticles (MnO2NPs) and chitosan derived from honeybees (CSH) in a nanostructured configuration. The resultant nanocomposites, namely CSLe@MnO2NPs and CSH/CSLe@MnO2NPs, underwent thorough characterization through various analytical techniques. UV-Vis spectroscopy unveiled distinctive features, such as ligand-to-metal charge transfer and photoluminescence, affirming the successful chitosan-functionalization of the MnO2NPs, thereby differentiating them from their pristine counterparts. FTIR spectra corroborated the binding of chitosan and identified crucial molecular functional groups. SEM-EDX analysis revealed the morphological properties, addressing non-uniform sizes in the as-calcined MnO2NPs by the uniform coating of CSH on CSLe@MnO2NPs, while EDX confirmed the presence of essential elements. TEM and SAED provided insights into the spherical morphology, crystalline structure, and lattice planes of these nanoparticles. Size distribution measurements highlighted distinctions between CSLe@MnO2NPs and CSH/CSLe@MnO2NPs. The nanomaterials underwent evaluation for their antimicrobial properties against a spectrum of Gram-negative and Gram-positive bacterial strains, with CSH/CSLe@MnO2NPs exhibiting the highest bactericidal activity. Additionally, they demonstrated low minimum inhibitory concentration (MIC) values, especially against S. aureus (MIC as low as 12.5 µg/ml). Their efficacy extended to anti-biofilm formation, significantly diminishing biofilm development in a dose-dependent manner, a pivotal factor in addressing biofilm-related infections. The study also scrutinized their cytotoxicity against normal Vero and PC3 prostate cancer cells, revealing potential anticancer properties. Dose-dependent reductions in cell viability were observed for both normal and cancer cells. In conclusion, these findings underscore the versatility and promise of CSH/CSLe@MnO2NPs in diverse biomedical applications, including antibacterial, anti-biofilm, and anticancer therapies.

About the authors

Mohamed Gamal Elharrif

Shaqra University

Author for correspondence.
Email: al_harrif@yahoo.com

PhD, Department of Basic Medical Sciences, College of Medicine

Saudi Arabia, Shaqra

N. A. Hassan

Chemical Industries Research Institute, National Research Centre

Email: al_harrif@yahoo.com

PhD, Synthetic Unit, Department of Photochemistry

Egypt, Cairo

M. Sharaf

AL-Azhar University; Ocean University of China

Email: al_harrif@yahoo.com

PhD, Department of Biochemistry and Molecular Biology

Egypt, Nasr City, Cairo; Qingdao, PR China

References

  1. Abd-ElGawad A.M., El-Amier Y.A., Assaeed A.M., Al-Rowaily S.L. Interspecific variations in the habitats of Reichardia tingitana (L.) Roth leading to changes in its bioactive constituents and allelopathic activity. Saudi J. Biol. Sci., 2020, vol. 27, no. 1, pp. 489–499. doi: 10.1016/j.sjbs.2019.11.015
  2. Alqahtani A.S., Nasr F.A., Ahmed M.Z., Bin Mansour M.Y., Biksmawi A.A., Noman O.M., Herqash R.N., Al-zharani M., Qurtam A.A., Rudayni H.A.J.O.C. In vitro protective and anti-inflammatory effects of Capparis spinosa and its flavonoids profile. Open Chemistry, 2023, vol. 21, no. 1: 20230186. doi: 10.1515/chem-2023-0186
  3. Alshawwa S.Z., Mohammed E.J., Hashim N., Sharaf M., Selim S., Alhuthali H.M., Alzahrani H.A., Mekky A.E., Elharrif M.G. In Situ Biosynthesis of Reduced Alpha Hematite (α-Fe2O3) Nanoparticles by Stevia Rebaudiana L. Leaf Extract: Insights into Antioxidant, Antimicrobial, and Anticancer Properties. Antibiotics (Basel), 2022, vol. 11, no. 9: 1252. doi: 10.3390/antibiotics11091252
  4. Arif M., Sharaf M., Samreen, Khan S., Chi Z., Liu C.G. Chitosan-based nanoparticles as delivery-carrier for promising antimicrobial glycolipid biosurfactant to improve the eradication rate of Helicobacter pylori biofilm. J. Biomater. Sci. Polym. Ed., 2021, vol. 32, no. 6, pp. 813–832. doi: 10.1080/09205063.2020.1870323
  5. Azhir E., Etefagh R., Mashreghi M., Pordeli P.J.P.C.R. Preparation, characterization and antibacterial activity of manganese oxide nanoparticles. Physical Chemistry Research, 2015, vol. 3, no. 3, pp. 197–204.
  6. Bakour M., Campos M.d.G., Imtara H., Lyoussi B. Antioxidant content and identification of phenolic/flavonoid compounds in the pollen of fourteen plants using HPLC-DAD. Journal of Apicultural Research, 2020, vol. 59, no. 1, pp. 35–41.
  7. Bilal M., Zhao Y., Rasheed T., Ahmed I., Hassan S.T.S., Nawaz M.Z., Iqbal H.M.N. Biogenic Nanoparticle–Chitosan Conjugates with Antimicrobial, Antibiofilm, and Anticancer Potentialities: Development and Characterization. Int. J. Environ. Res. Public Health, 2019, vol. 16, no. 4: 598. doi: 10.3390/ijerph16040598
  8. Ceriello A. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes, 2005, vol. 54, no. 1, pp. 1–7. doi: 10.2337/diabetes.54.1.1
  9. Chandrasekaran R., Gnanasekar S., Seetharaman P., Keppanan R., Arockiaswamy W., Sivaperumal S. Formulation of Carica papaya latex-functionalized silver nanoparticles for its improved antibacterial and anticancer applications. J. Mol. Liq., 2016, vol. 219, pp. 232–238.
  10. Cushnie T.P., Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, vol. 26, no. 5, pp. 343–356. doi: 10.1016/j.ijantimicag.2005.09.002
  11. Danaei M., Dehghankhold M., Ataei S., Hasanzadeh Davarani F., Javanmard R., Dokhani A., Khorasani S., Mozafari M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 2018, vol. 10, no. 2: 57. doi: 10.3390/pharmaceutics10020057
  12. Dang T.-D., Cheney M.A., Qian S., Joo S.W., Min B.-K. A novel rapid one-step synthesis of manganese oxide nanoparticles at room temperature using poly (dimethylsiloxane). Ind. Eng. Chem. Res., 2013, vol. 52, no. 7, pp. 2750–2753.
  13. Eaton P., Fernandes J.C., Pereira E., Pintado M.E., Xavier Malcata F. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy, 2008, vol. 108, no. 10, pp. 1128–1134. doi: 10.1016/j.ultramic.2008.04.015
  14. El Rabey H.A., Almutairi F.M., Alalawy A.I., Al-Duais M.A., Sakran M.I., Zidan N.S., Tayel A.A. Augmented control of drug-resistant Candida spp. via fluconazole loading into fungal chitosan nanoparticles. Int. J. Biol. Macromol., 2019, vol. 141, pp. 511–516. doi: 10.1016/j.ijbiomac.2019.09.036
  15. Elgadir M.A., Uddin M.S., Ferdosh S., Adam A., Chowdhury A.J.K., Sarker M.Z.I. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J. Food. Drug Anal., 2015, vol. 23, no. 4, pp. 619–629. doi: 10.1016/j.jfda.2014.10.008
  16. Elnosary M.E., Aboelmagd H.A., Habaka M.A., Salem S.R., El-Naggar M.E. Synthesis of bee venom loaded chitosan nanoparticles for anti-MERS-COV and multi-drug resistance bacteria. Int. J. Biol. Macromol., 2023, vol. 224, pp. 871–880. doi: 10.1016/j.ijbiomac.2022.10.173
  17. Fu P.P., Xia Q., Hwang H.M., Ray P.C., Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food. Drug Anal., 2014, vol. 22, no. 1, pp. 64–75. doi: 10.1016/j.jfda.2014.01.005
  18. Gan Q., Wang T. Chitosan nanoparticle as protein delivery carrier — systematic examination of fabrication conditions for efficient loading and release. Colloids Surf. B Biointerfaces, 2007, vol. 59, no. 1, pp. 24–34. doi: 10.1016/j.colsurfb.2007.04.009
  19. Harrigan W.F., McCance M.E. Laboratory methods in food and dairy microbiology. Academic Press Inc. (London) Ltd., 1976.
  20. Hoseinpour V., Ghaemi N. Novel ZnO–MnO2–Cu2O triple nanocomposite: facial synthesis, characterization, antibacterial activity and visible light photocatalytic performance for dyes degradation — a comparative study. Materials Research Express, 2018, vol. 5, no. 8: 085012.
  21. Ingale A.G., Chaudhari A.N. Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J. Nanomed. Nanotechol., 2013, vol. 4, no. 165, pp. 1–7. doi: 10.4172/2157-7439.1000165
  22. Jaganyi D., Altaf M., Wekesa I. Synthesis and characterization of whisker-shaped MnO2 nanostructure at room temperature. Appl. Nanosci., 2013, vol. 3, pp. 329–333. doi: 10.1007/s13204-012-0135-3
  23. Jayandran M., Muhamed haneefa M., Balasubramanian V. Green synthesis and characterization of Manganese nanoparticles using natural plant extracts and its evaluation of antimicrobial activity. J. App. Pharm. Sci., 2015, vol. 5, no. 12, pp. 105–110. doi: 10.7324/JAPS.2015.501218
  24. Jeyaraj M., Sathishkumar G., Sivanandhan G., MubarakAli D., Rajesh M., Arun R., Kapildev G., Manickavasagam M., Thajuddin N., Premkumar K., Ganapathi A. Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf. B Biointerfaces, 2013, vol. 106, pp. 86–92. doi: 10.1016/j.colsurfb.2013.01.027
  25. Joshi N.C., Joshi E., Singh A. Biological Synthesis, Characterisations and Antimicrobial activities of manganese dioxide (MnO2) nanoparticles. Research J. Pharm. and Tech., 2020, vol. 13, no. 1, pp. 135–140.
  26. Joshi N.C., Siddiqui F., Salman M., Singh A. Antibacterial Activity, Characterizations, and Biological Synthesis of Manganese Oxide Nanoparticles using the Extract of Aloe vera. Asian Pac. J. Health Sci., 2020, vol. 7, no. 3, pp. 27–29. doi: 10.21276/apjhs.2020.7.3.7
  27. Kant R., Pathak S., Dutta V. Design and fabrication of sandwich-structured α-Fe2O3/Au/ZnO photoanode for photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 2018, vol. 178, pp. 38–45. doi: 10.1016/j.solmat.2018.01.005
  28. Khan S.A., Shahid S., Shahid B., Fatima U., Abbasi S.A. Green Synthesis of MnO Nanoparticles Using Abutilon indicum Leaf Extract for Biological, Photocatalytic, and Adsorption Activities. Biomolecules, 2020, vol. 10, no. 5: 785. doi: 10.3390/biom10050785
  29. Khanna P., Ong C., Bay B.H., Baeg G.H. Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials (Basel), 2015, vol. 5, no. 3, pp. 1163–1180. doi: 10.3390/nano5031163
  30. Khaydarova H.A., Ikhtiyarova G.A., Khaydarova A.A. Method of obtaining a chitosan aminopolisaccharide from behbat Apis Mellifera. Journal of Chemistry Kazakistan, 2019, no. 2, pp. 69–74.
  31. Khomsi M.E., Imtara H., Kara M., Hmamou A., Assouguem A., Bourkhiss B., Tarayrah M., AlZain M.N., Alzamel N.M., Noman O., Hmouni D. Antimicrobial and Antioxidant Properties of Total Polyphenols of Anchusa italica Retz. Molecules, 2022, vol. 27, no. 2: 416. doi: 10.3390/molecules27020416
  32. Kravanja G., Primožič M., Knez Ž., Leitgeb M. Chitosan-based (Nano)materials for Novel Biomedical Applications. Molecules, 2019, vol. 24, no. 10: 1960. doi: 10.3390/molecules24101960
  33. Kulkarni A.P., Srivastava A.A., Nagalgaon R.K., Zunjarrao R.S. Phytofabrication of Silver Nanoparticles from a Novel Plant Source and Its Application. International Journal of Biological & Pharmaceutical Research, 2012, no. 3, pp. 417–421.
  34. Kumar G.S., Venkataramana B., Reddy S.A., Maseed H., Nagireddy R.R. Hydrothermal synthesis of Mn3O4 nanoparticles by evaluation of pH effect on particle Size formation and its antibacterial activity. Adv. Nat. Sci. Nanosci. Nanotechnol., 2020, no. 11: 035006. doi: 10.1088/2043-6254/ab9cac
  35. Kunkalekar R. Role of oxides (Fe3O4, MnO2) in the antibacterial action of Ag-metal oxide hybrid nanoparticles. Noble Metal-Metal Oxide Hybrid Nanoparticles. Elsevier, 2019, pp. 303–312.
  36. Li Y., Liu J., Wang L., Zhang J., Wang Z., Gao Z., Zhong Y., Zhang D. Notice of Retraction: Preparation and Characterization of Mn0.5Zn0.5Fe2O4@Au Composite Nanoparticles and Its Anti-Tumor Effect on Hepatocellular Carcinoma Cells. 5th International Conference on Bioinformatics and Biomedical Engineering. Wuhan, China, 2011, pp. 1–4. doi: 10.1109/icbbe.2011.5781653
  37. Lotfy V.F., Basta A.H. A green approach to the valorization of kraft lignin for the production of nanocomposite gels to control the release of fertilizer. Biofuels, Bioproducts and Biorefining, 2022, vol. 16, no. 2, pp. 488–498. doi: 10.1002/bbb.2317
  38. Lu H., Zhang X., Khan S.A., Li W., Wan L. Biogenic Synthesis of MnO2 Nanoparticles With Leaf Extract of Viola betonicifolia for Enhanced Antioxidant, Antimicrobial, Cytotoxic, and Biocompatible Applications. Front. Microbiol., 2021, no. 12: 761084. doi: 10.3389/fmicb.2021.761084
  39. Majani S.S., Sathyan S., Manoj M.V., Vinod N., Pradeep S., Shivamallu C., Venkatachalaiah K., Kollur S.P. Eco-friendly synthesis of MnO2 nanoparticles using Saraca asoca leaf extract and evaluation of in vitro anticancer activity. Current Research in Green and Sustainable Chemistry, 2023, vol. 6: 100367. doi: 10.1016/j.crgsc.2023.100367
  40. Manjula R., Thenmozhi M., Thilagavathi S., Srinivasan R., Kathirvel A. Green synthesis and characterization of manganese oxide nanoparticles from Gardenia resinifera leaves. Materials Today: Proceedings, 2020, vol. 26, pp. 3559–3563. doi: 10.1016/j.matpr.2019.07.396
  41. Manke A., Wang L., Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed. Res. Int., 2013, no. 2013: 942916. doi: 10.1155/2013/942916
  42. Marchand G., Fabre G., Maldonado-Carmona N., Villandier N., Leroy-Lhez S. Acetylated lignin nanoparticles as a possible vehicle for photosensitizing molecules. Nanoscale Adv., 2020, vol. 2, no. 12, pp. 5648–5658. doi: 10.1039/d0na00615g
  43. Mohamed D.I., Alaa El-Din Aly El-Waseef D., Nabih E.S., El-Kharashi O.A., Abd El-Kareem H.F., Abo Nahas H.H., Abdel-Wahab B.A., Helmy Y.A., Alshawwa S.Z., Saied E.M. Acetylsalicylic Acid Suppresses Alcoholism-Induced Cognitive Impairment Associated with Atorvastatin Intake by Targeting Cerebral miRNA155 and NLRP3: In Vivo, and In Silico Study. Pharmaceutics, 2022, vol. 14, no. 3: 529. doi: 10.3390/pharmaceutics14030529
  44. Mohamed D.I., Ezzat S.F., Elayat W.M., El-Kharashi O.A., El-Kareem H.F.A., Nahas H.H.A., Abdel-Wahab B.A., Alshawwa S.Z., Saleh A., Helmy Y.A., Khairy E., Saied E.M. Hepatoprotective Role of Carvedilol against Ischemic Hepatitis Associated with Acute Heart Failure via Targeting miRNA-17 and Mitochondrial Dynamics-Related Proteins: An In Vivo and In Silico Study. Pharmaceuticals (Basel), 2022, vol. 15, no. 7: 832. doi: 10.3390/ph15070832
  45. Moon S.A., Salunke B.K., Alkotaini B., Sathiyamoorthi E., Kim B.S. Biological synthesis of manganese dioxide nanoparticles by Kalopanax pictus plant extract. IET Nanobiotechnol., 2015, vol. 9, no. 4, pp. 220–5. doi: 10.1049/iet-nbt.2014.0051
  46. Morena A.G., Stefanov I., Ivanova K., Perez-Rafael S.l., Sanchez-Soto M., Tzanov T. Antibacterial polyurethane foams with incorporated lignin-capped silver nanoparticles for chronic wound treatment. Industrial & Engineering Chemistry Research, 2020, vol. 59, no. 10, pp. 4504–4514.
  47. Neamah S.A., Albukhaty S., Falih I.Q., Dewir Y.H., Mahood H.B. Biosynthesis of Zinc Oxide Nanoparticles Using Capparis spinosa L. Fruit Extract: Characterization, Biocompatibility, and Antioxidant Activity. Appl. Sci., 2023, vol. 13, no. 11: 6604. doi: 10.1016/B978-0-12-822446-5.00010-1
  48. Özçelik B., Orhan D.D., Özgen S., Ergun F. Antimicrobial activity of flavonoids against extended-spectrum β-lactamase (ESβL)-producing Klebsiella pneumoniae. Tropical Journal of Pharmaceutical Research, 2008, vol. 7, no. 4, pp. 1151–1157. doi: 10.4314/tjpr.v7i4.14701
  49. Pagar T., Ghotekar S., Pagar K., Pansambal S., Oza R. Phytogenic synthesis of manganese dioxide nanoparticles using plant extracts and their biological application. Handbook of Greener Synthesis of Nanomaterials and Compounds. Elsevier: 2021, pp. 209–218. doi: 10.3390/app13116604
  50. Piao M.J., Kang K.A., Lee I.K., Kim H.S., Kim S., Choi J.Y., Choi J., Hyun J.W. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett., 2011, vol. 201, no. 1, pp. 92–100. doi: 10.1016/j.toxlet.2010.12.010
  51. Procop G.W., Church D.L., Hall G.S., Janda W.M. Koneman’s color atlas and textbook of diagnostic microbiology. Jones & Bartlett Publishers, 2020. 1830 p.
  52. Qi L.F., Xu Z.R., Li Y., Jiang X., Han X.Y. In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World J. Gastroenterol., 2005, vol. 11, no. 33, pp. 5136–5141. doi: 10.3748/wjg.v11.i33.5136
  53. Raza M.A., Mukhtar F., Danish M. Cuscuta reflexa and Carthamus Oxyacantha: potent sources of alternative and complimentary drug. Springerplus, 2015, no. 4: 76. doi: 10.1186/s40064-015-0854-5
  54. Razanamahandry L.C., Onwordi C.T., Saban W., Bashir A.K.H., Mekuto L., Malenga E., Manikandan E., Fosso-Kankeu E., Maaza M., Ntwampe S.K.O. Performance of various cyanide degrading bacteria on the biodegradation of free cyanide in water. J. Hazard Mater., 2019, no. 380: 120900. doi: 10.1016/j.jhazmat.2019.120900
  55. Ríos J.L., Recio M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol., 2005, vol. 100, no. 1–2, pp. 80–84. doi: 10.1016/j.jep.2005.04.025
  56. Sankar Ganesh P., Ravishankar Rai V. Attenuation of quorum-sensing-dependent virulence factors and biofilm formation by medicinal plants against antibiotic resistant Pseudomonas aeruginosa. J. Tradit. Complement. Med., 2017, vol. 8, no. 1, pp. 170–177. doi: 10.1016/j.jtcme.2017.05.008
  57. Saod W.M., Hamid L.L., Alaallah N.J., Ramizy A. Biosynthesis and antibacterial activity of manganese oxide nanoparticles prepared by green tea extract. Biotechnol. Rep. (Amst), 2022, vol. 34: e00729. doi: 10.1016/j.btre.2022.e00729
  58. Selim M.S., Fatthallah N.A., Higazy S.A., Chen X., Hao Z. Novel blade-like structure of reduced graphene oxide/α-Mn2O3 nanocomposite as an antimicrobial active agent against aerobic and anaerobic bacteria. Materials Chemistry and Physics, 2023, no. 298: 127436. doi: 10.1016/j.matchemphys.2023.127436
  59. Selim M.S., Hamouda H., Hao Z., Shabana S., Chen X. Design of γ-AlOOH, γ-MnOOH, and α-Mn2O3 nanorods as advanced antibacterial active agents. Dalton Trans., 2020, vol. 49, no. 25, pp. 8601–8613. doi: 10.1039/d0dt01689f
  60. Severino R., Ferrari G., Vu K.D., Donsì F., Salmieri S., Lacroix M. Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157: H7 and Salmonella Typhimurium on green beans. Food Control, 2015, vol. 50, pp. 215–222. doi: 10.1016/j.foodcont.2014.08.029
  61. Shahid S.A., Anwar F., Shahid M., Majeed N., Azam A., Bashir M., Amin M., Mahmood Z., Shakir I. Laser-Assisted synthesis of Mn0.50Zn0.50Fe2O4 nanomaterial: characterization and in vitro inhibition activity towards bacillus subtilis biofilm. Journal of Nanomaterials, 2015, vol. 16, no. 1: 111. doi: 10.1155/2015/896185
  62. Sharaf M., Sewid A.H., Hamouda H.I., Elharrif M.G., El-Demerdash A.S., Alharthi A., Hashim N., Hamad A.A., Selim S., Alkhalifah D.H.M., Hozzein W.N., Abdalla M., Saber T. Rhamnolipid-Coated Iron Oxide Nanoparticles as a Novel Multitarget Candidate against Major Foodborne E. coli Serotypes and Methicillin-Resistant S. aureus. Microbiol. Spectr., 2022, vol. 10, no. 4: e0025022. doi: 10.1128/spectrum.00250-22
  63. Sharma G., Kumar A., Naushad M., García-Peñas A., Al-Muhtaseb A.H., Ghfar A.A., Sharma V., Ahamad T., Stadler F.J. Fabrication and characterization of Gum arabic-cl-poly(acrylamide) nanohydrogel for effective adsorption of crystal violet dye. Carbohydr. Polym., 2018, vol. 202, pp. 444–453. doi: 10.1016/j.carbpol.2018.09.004
  64. Silva L.P. da, de Britto D., Seleghim M.H.R., Assis O.B.G. In vitro activity of water-soluble quaternary chitosan chloride salt against E. coli. World Journal of Microbiology and Biotechnology, 2010, vol. 26, no. 11, pp. 2089–2092.
  65. Souri M., Hoseinpour V., Shakeri A., Ghaemi N. Optimisation of green synthesis of MnO nanoparticles via utilising response surface methodology. IET Nanobiotechnol., 2018, vol. 12, no. 6, pp. 822–827. doi: 10.1049/iet-nbt.2017.0145
  66. Srinivasa C., Kumar S.R.S., Pradeep S., Prasad S.K., Veerapur R., Ansari M.A., Alomary M.N., Alghamdi S., Almehmadi M., Gc K., Daphedar A.B., Kakkalameli S.B., Shivamallu C., Kollur S.P. Eco-Friendly Synthesis of MnO2 Nanorods Using Gmelina arborea Fruit Extract and Its Anticancer Potency Against MCF-7 Breast Cancer Cell Line. Int. J. Nanomedicine, 2022, vol. 17, pp. 901–907. doi: 10.2147/IJN.S335848
  67. Sun S.-N., Li M.-F., Yuan T.-Q., Xu F., Sun R.-C. Effect of ionic liquid/organic solvent pretreatment on the enzymatic hydrolysis of corncob for bioethanol production. Part 1: Structural characterization of the lignins. Industrial Crops and Products, 2013, vol. 43, pp. 570–577. doi: 10.1016/j.indcrop.2012.07.074
  68. Suzuki S., Miyayama M. Structural Distortion in MnO2 Nanosheets and Its Suppression by Cobalt Substitution. Nanomaterials (Basel), 2017, vol. 7, no. 10: 295. doi: 10.3390/nano7100295
  69. Svirska S., Grytsyk A.Investigation of tannins in Anchusa officinalis L. Pharma Innovation, 2018, vol. 7, no. 4, pp. 758–761.
  70. Taleb F., Ammar M., Mosbah M.B., Salem R.B., Moussaoui Y. Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption. Sci. Rep., 2020, vol. 10, no. 1: 11048. doi: 10.1038/s41598-020-68047-6
  71. Vashistha V.K., Gautam S., Bala R., Kumar A., Das D.K. Transition Metal-Based Nanoparticles as Potential Antimicrobial Agents. Reviews and Advances in Chemistry, 2022, vol. 12, no. 4, pp. 222–247.
  72. Xia H.-Y., Li B.-Y., Zhao Y., Han Y.-H., Wang S.-B., Chen A.-Z., Kankala R.K. Nanoarchitectured manganese dioxide (MnO2)-based assemblies for biomedicine. Coordination Chemistry Reviews, 2022, vol. 464: 214540. doi: 10.1016/j.ccr.2022.214540
  73. Zhang H., Ma Z.F. Phytochemical and Pharmacological Properties of Capparis spinosa as a Medicinal Plant. Nutrients, 2018, vol. 10, no. 2: 116. doi: 10.3390/nu10020116

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. HPLC chromatogram of C. spinosa extract

Download (413KB)
3. Figure 2. Physico-chemical characterization (A) UV-Vis spectroscopic, (B) FTIR of CSH, CSLe@MnO2NPs, and CSH/CSLe@MnO2NPs, (C and D) SEM image (magnification 5 μm and 200 nm), and (E and F) EDX microphotographs of CSLe@MnO2NPs, and CSH/CSLe@MnO2NPs composite

Download (1MB)
4. Figure 3. Physico-chemical characterization (A and B) TEM image. (C and D) High-resolution TEM (HRTEM) image and (E and F) SAED pattern of the same. of a single nanoparticle. (G and H) Size distribution measured by TEM of CSLe@MnO2NPs, and CSH/CSLe@MnO2NPs composite

Download (987KB)
5. Figure 4. The inhibition zone of different pathogenic bacteria strains S. aureus, S. hominis, E. faecalis, A. baumannii, K. pneumoniae, and E. coli against by (A) negative control (dH2O), (B) positive control, (C) SCLe, (D) SCLe@MnO2NPs, and (E) CSH/SCLe@MnO2NPs

Download (2MB)
6. Figure 5. Anti-biofilm activity of (A) SCLe, (B) SCLe@MnO2NPs, and (C) CSH/SCLe@MnO2NPs against selected isolated bacteria pathogen’s

Download (1MB)
7. Figure 6. Cytotoxicity of SCLe, MnO2NPs, and CSH/SCLe@MnO2NPs on normal Vero cells (A and B), and prostate carcinoma PC3 cells (C and D) for 24 h. The results were taken from replicated (n = 3) (Mean±SD). (B and D) Morphological features, the images were taken from the cells were treated with an average size of 10 nm for 24 h

Download (3MB)

Copyright (c) 2024 Elharrif M.Г., Hassan N.A., Sharaf M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».