Alterations in T cell immunity over 6–12 months post-COVID-19 infection in convalescent individuals: a screening study
- Authors: Zurochka A.V.1,2, Dobrynina M.А.1,2,3, Safronova E.A.3,4, Zurochka V.A.1,2, Zuikova A.A.2, Sarapultsev G.P.5, Zabkov O.I.2, Mosunov A.A.2,6, Verkhovskaya M.D.2,6, Ducardt V.V.2, Fomina L.O.2, Kostolomova E.G.7, Ostankova Y.V.8, Kudryavtsev I.V.9, Totolian A.A.8
-
Affiliations:
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences
- Federal Research Institute of Viral Infections “Virom”
- State Research Center of the Russian Federation — Federal Medical Biophysical Center named after A.I. Burnazyan of the Federal Medical and Biological Agency of the Russian Federation
- South Ural State Medical University
- 354 Military Clinical Hospital of the Russian Ministry of Defense
- Chelyabinsk State University
- Tyumen State Medical University
- St. Petersburg Pasteur Institute
- Institute of Experimental Medicine
- Issue: Vol 14, No 4 (2024)
- Pages: 756-768
- Section: ORIGINAL ARTICLES
- URL: https://journal-vniispk.ru/2220-7619/article/view/268709
- DOI: https://doi.org/10.15789/2220-7619-AIT-17646
- ID: 268709
Cite item
Full Text
Abstract
Acute COVID-19 is a viral infection caused by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that results in dramatically decreased peripheral blood CD3+ T cell count apparently due to alterations of thymic T cell maturation, that can persist long term afterwards. Therefore, we analyzed the levels of peripheral blood TRECs (T-cell receptor excision circles), and investigated the main alterations in peripheral blood T cell subsets in COVID-19 convalescents. We performed molecular quantification of TRECs with “TREC/KREC-AMP PS” kit and flow cytometric analysis of peripheral blood lymphocytes from three groups of patients. The first group contained 109 samples from COVID-19 convalescents (6–12 month post-acute COVID-19) with normal levels of TRECs (TRECn); the second was formed from COVID-19 convalescents (6–12 month post-acute COVID-19) with decreased levels of TRECs (TREClow, n = 29), and healthy control group (HC, n = 18). We noticed no significant differences between all three groups in CD3+ T cell relative and absolute numbers. However, CD4+ T cell frequencies were decreased in TREClow and TRECn groups compared to HC (40.8% (31.6; 50.1) and 46.4% (40.0; 53.0) vs 53.5% (47.36; 56.9), p < 0.001 and р = 0.004, respectively). Furthermore, Th cell levels were decreased in TREClow patients vs HC and TRECn groups (701 cell/1 µL (478; 807) vs 1005 cell/1 µL (700; 1419), р = 0.020, and 876 cell/ 1 µL (661; 1046), р = 0.008, respectively). Finally, both groups of COVID-19 convalescents had increased frequencies of circulating CD8+ T cells — 29.4% (20.7; 39.7) in TREClow group, 26.5% (21.1; 32.7) in TRECn group vs 21.3% (17.1; 26.0) in healthy controls (p = 0.024 and р = 0.026, respectively). In TRECn group, CD8+ T cell count was elevated vs control range (508 cell/1 µL (372; 622) vs 356 cell/1 µL (247; 531), р = 0.044). Thus, COVID-19 convalescents (6–12 month post-acute COVID-19) showed an imbalance in CD4+ and CD8+ T cell level even at 6–12 months post-acute SARS-CoV-2 infection, and the observed changes in peripheral blood T cells could be closely related to the alterations in thymic T cell maturation and differentiation. Such a long-term decline in TREC levels in the circulation may have a profound impact on immune system functions and requires immunocorrection therapy.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
A. V. Zurochka
Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences; Federal Research Institute of Viral Infections “Virom”
Email: igorek1981@yandex.ru
DSc (Medicine), Professor, Honored Scientist of the Russian Federation, Leading Researcher, Laboratory of Immunopathophysiology; Leading Researcher, Laboratory of Transmissible Viral Diseases
Russian Federation, Yekaterinburg; EkaterinburgM. А. Dobrynina
Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences; Federal Research Institute of Viral Infections “Virom”; State Research Center of the Russian Federation — Federal Medical Biophysical Center named after A.I. Burnazyan of the Federal Medical and Biological Agency of the Russian Federation
Email: igorek1981@yandex.ru
PhD (Medicine), Associate Professor, Researcher, Laboratory of Immunopathophysiology; Senior Researcher, Laboratory of Transmissible Viral Diseases; Associate Professor, Department of Internal Medicine, Medical and Biological University of Innovation and Continuing Education
Russian Federation, Yekaterinburg; Yekaterinburg; MoscowE. A. Safronova
State Research Center of the Russian Federation — Federal Medical Biophysical Center named after A.I. Burnazyan of the Federal Medical and Biological Agency of the Russian Federation; South Ural State Medical University
Email: igorek1981@yandex.ru
PhD (Medicine), Associate Professor, Associate Professor of the Department of Polyclinic Therapy and Clinical Pharmacology; Lecturer at the Department of Therapy
Russian Federation, Moscow; ChelyabinskV. A. Zurochka
Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences; Federal Research Institute of Viral Infections “Virom”
Email: igorek1981@yandex.ru
DSc (Medicine), Senior Researcher; Senior Researcher, Biotechnology Laboratory, Russian-Chinese Center
Russian Federation, Yekaterinburg; EkaterinburgA. A. Zuikova
Federal Research Institute of Viral Infections “Virom”
Email: igorek1981@yandex.ru
Intern of the Laboratory of Transmissible Viral Diseases
Russian Federation, EkaterinburgG. P. Sarapultsev
354 Military Clinical Hospital of the Russian Ministry of Defense
Email: igorek1981@yandex.ru
Head of Endoscopy Department
Russian Federation, EkaterinburgO. I. Zabkov
Federal Research Institute of Viral Infections “Virom”
Email: igorek1981@yandex.ru
Researcher, Laboratory of Transmissible Viral Diseases
Russian Federation, EkaterinburgA. A. Mosunov
Federal Research Institute of Viral Infections “Virom”; Chelyabinsk State University
Email: igorek1981@yandex.ru
Student; Intern of the Laboratory of Transmissible Viral Diseases
Russian Federation, Ekaterinburg; ChelyabinskM. D. Verkhovskaya
Federal Research Institute of Viral Infections “Virom”; Chelyabinsk State University
Email: igorek1981@yandex.ru
Student; Intern of the Laboratory of Transmissible Viral Diseases
Russian Federation, Ekaterinburg; ChelyabinskV. V. Ducardt
Federal Research Institute of Viral Infections “Virom”
Email: igorek1981@yandex.ru
Senior Researcher, Laboratory of Transmissible Viral Diseases
Russian Federation, EkaterinburgL. O. Fomina
Federal Research Institute of Viral Infections “Virom”
Email: igorek1981@yandex.ru
Researcher, Laboratory of Transmissible Viral Diseases
Russian Federation, EkaterinburgE. G. Kostolomova
Tyumen State Medical University
Email: igorek1981@yandex.ru
PhD (Biology), Associate Professor, Department of Microbiology
Russian Federation, TyumenYu. V. Ostankova
St. Petersburg Pasteur Institute
Email: igorek1981@yandex.ru
PhD (Biology), Head of the Laboratory of immunology and Virology HIV Infection, Senior Researcher of the Laboratory of Molecular Immunology
Russian Federation, St. PetersburgIgor V. Kudryavtsev
Institute of Experimental Medicine
Author for correspondence.
Email: igorek1981@yandex.ru
PhD (Biology), Head of the Cell Immunology Laboratory, Department of Immunology
Russian Federation, St. PetersburgA. A. Totolian
St. Petersburg Pasteur Institute
Email: igorek1981@yandex.ru
RAS Full Member, DSc (Medicine), Professor, Head of the Laboratory of Molecular Immunology, Director
Russian Federation, St. PetersburgReferences
- Гордукова М.А., Корсунский И.А., Чурсинова Ю.В., Бяхова М.М., Оскорбин И.П., Продеус А.П., Филипенко М.Л. Определение референсных интервалов TREC и KREC для скрининга новорожденных с иммунодефицитными состояниями в РФ // Медицинская иммунология. 2019. Т. 21, № 3. С. 527–538. [Gordukova M.A., Korsunsky I.A., Chursinova Yu.V., Byakhova M.M., Oscorbin I.P., Prodeus A.P., Filipenko M.L. Determining reference ranges for TREC and KREC assays in immune deficiency screening of newborns in Russian Federation. Meditsinskaya immunologiya = Medical Immunology (Russia), 2019, vol. 21, no. 3, pp. 527–538. (In Russ.)] doi: 10.15789/1563-0625-2019-3-527-538
- Добрынина М.А., Зурочка А.В., Зурочка В.А., Рябова Л.В., Сарапульцев А.П. Формирование подходов к иммунокоррекции нарушений иммунной системы у постковидных пациентов // Российский иммунологический журнал. 2023. Т. 26, № 4. С. 641–646. [Dobrynina M.A., Zurochka A.V., Zurochka V.A., Ryabova L.V., Sarapultsev A.P. Approaches to correction of immune system disturbances in post-COVID patients. Rossiiskii immunologicheskii zhurnal = Russian Journal of Immunology, 2023, vol. 26, no. 4, pp. 641–646. (In Russ.)] doi: 10.46235/1028-7221-13492-ATC
- Добрынина М.А., Ибрагимов Р.В., Крицкий И.С., Верховская М.Д., Мосунов А.А., Сарапульцев Г.П., Зурочка А.В., Зурочка В.А., Сарапульцев А.П., Комелькова М.В., Рябова Л.В., Праскурничий Е.А. Постковидный синдром иммунопатологии. Характеристика фенотипических изменений иммунной системы у постковидных пациентов // Медицинская иммунология. 2023. Т. 25, № 4. С. 791–796. [Dobrynina M.A., Ibragimov R.V., Kritsky I.S., Verkhovskaya M.D., Mosunov A.A., Sarapultsev G.P., Zurochka A.V., Zurochka V.A., Sarapultsev A.P., Komelkova M.V., Ryabova L.V., Praskurnichiy E.A. Post-COVID immunopatology syndrome: characteristics of phenotypical changes in the immune system in post-COVID patients. Meditsinskaya immunologiya = Medical Immunology (Russia), 2023, vol. 25, no. 4, pp. 791–796. (In Russ.)] doi: 10.15789/1563-0625-PCI-2707
- Сайтгалина М.А., Любимова Н.Е., Останкова Ю.В., Кузнецова Р.Н., Тотолян Арег А. Определение референтных интервалов циркулирующих в крови эксцизионных колец TREC и KREC у лиц старше 18 лет // Медицинская иммунология. 2022. Т. 24, № 6. С. 1227–1236. [Saitgalina M.A., Liubimova N.E., Ostankova Yu.V., Kuznetzova R.N., Totolian A.A. Determination of reference values for TREC and KREC in circulating blood of the persons over 18 years. Meditsinskaya immunologiya = Medical Immunology (Russia), 2022, vol. 24, no. 6, pp. 1227–1236. (In Russ.)] doi: 10.15789/1563-0625-DOR-2587
- Сайтгалина М.А., Останкова Ю.В., Арсентьева Н.А., Коробова З.Р., Любимова Н.Е., Кащенко В.А., Куликов А.Н., Певцов Д.Э., Станевич О.В., Черных Е.И., Тотолян А.А. Оценка уровней молекул TREC и KREC у больных COVID-19 с разной степенью тяжести течения заболевания // Инфекция и иммунитет. 2023. Т. 13, № 5. C. 873–884. [Saitgalina M.A., Ostankova Y.V., Arsentieva N.A., Korobova Z.R., Liubimova N.E., Kashchenko V.A., Kulikov A.N., Pevtsov D.E., Stanevich O.V., Chernykh E.I., Totolian A.A. Assessment of trec and krec levels in COVID-19 patients with varying disease severity. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 5, pp. 873–884. (In Russ.)] doi: 10.15789/2220-7619-AOT-16937
- Сайтгалина М.А., Останкова Ю.В., Арсентьева Н.А., Коробова З.Р., Любимова Н.Е., Кащенко В.А., Куликов А.Н., Певцов Д.Э., Станевич О.В., Черных Е.И., Тотолян А.А. Значимость определения уровней молекул TREC и KREC в периферической крови для прогноза исхода заболевания COVID-19 в острый период // Российский иммунологический журнал. 2023. Т. 26, № 4. С. 611–618. [Saitgalina M.A., Ostankova Y.V., Arsentieva N.A., Korobova Z.R., Liubimova N.E., Kashchenko V.A., Kulikov A.N., Pevtsov D.E., Stanevich O.V., Chernykh E.I., Totolian A.A. Levels of TREC and KREC molecules significance determining in peripheral blood for predicting the outcome of COVID-19 disease in the acute period. Rossiiskii immunologicheskii zhurnal = Russian Journal of Immunology, 2023, vol. 26, no. 4, pp. 611–618 (In Russ.)] doi: 10.46235/1028-7221-14714-LOT
- Сайтгалина М.А., Останкова Ю.В., Любимова Н.Е., Семенов А.В., Кузнецова Р.Н., Тотолян А.А. Модифицированный метод количественного определения уровней TREC и KREC в периферической крови у больных с иммунодефицитными состояниями // Инфекция и иммунитет. 2022. Т. 12, № 5. C. 981–996 [Saitgalina M.A., Ostankova Y.V., Liubimova N.E., Semenov A.V., Kuznetsova R.N., Totolian A.A. Modified quantitative approach for assessing peripheral blood TREC and KREC levels in immunodeficient patients. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 5, pp. 981–996. (In Russ.)] doi: 10.15789/2220-7619-MMF-2039
- Ahmed S., Zimba O., Gasparyan A.Y. COVID-19 and the clinical course of rheumatic manifestations. Clin. Rheumatol., 2021, vol. 40, no. 7, pp. 2611–2619. doi: 10.1007/s10067-021-05691-x
- De Biasi S., Meschiari M., Gibellini L., Bellinazzi C., Borella R., Fidanza L., Gozzi L., Iannone A., Lo Tartaro D., Mattioli M., Paolini A., Menozzi M., Milić J., Franceschi G., Fantini R., Tonelli R., Sita M., Sarti M., Trenti T., Brugioni L., Cicchetti L., Facchinetti F., Pietrangelo A., Clini E., Girardis M., Guaraldi G., Mussini C., Cossarizza A. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat. Commun., 2020, vol. 11, no. 1: 3434. doi: 10.1038/s41467-020-17292-4
- De Bruyn A., Verellen S., Bruckers L., Geebelen L., Callebaut I., De Pauw I., Stessel B., Dubois J. Secondary infection in COVID-19 critically ill patients: a retrospective single-center evaluation. BMC Infect. Dis., 2022, vol. 22, no. 1: 207. doi: 10.1186/s12879-022-07192-x
- Diao B., Wang C., Tan Y., Chen X., Liu Y., Ning L., Chen L., Li M., Liu Y., Wang G., Yuan Z., Feng Z., Zhang Y., Wu Y., Chen Y. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front. Immunol., 2020, vol. 11: 827. doi: 10.3389/fimmu.2020.00827
- Essien F., Chastant L., McNulty C., Hubbard M., Lynette L., Carroll M. COVID-19-induced psoriatic arthritis: a case repor. Ther. Adv. Chronic Dis., 2022, vol. 13: 20406223221099333. doi: 10.1177/20406223221099333
- Ferrando-Martinez S., De Pablo-Bernal R.S., De Luna-Romero M., De Ory S.J., Genebat M., Pacheco Y.M., Parras F.J., Montero M., Blanco J.R., Gutierrez F., Santos J., Vidal F., Koup R.A., Muñoz-Fernández M.Á., Leal M., Ruiz-Mateos E. Thymic function failure is associated with human immunodeficiency virus disease progression. Clin. Infect. Dis., 2017, vol. 64, no. 9, pp. 1191–1197. doi: 10.1093/cid/cix095.
- Gold J.E., Okyay R.A., Licht W.E., Hurley D.J. Investigation of long COVID prevalence and its relationship to Epstein–Barr virus reactivation. Pathogens, 2021, vol. 10, no. 6: 763. doi: 10.3390/pathogens10060763
- Gong F., Dai Y., Zheng T., Cheng L., Zhao D., Wang H., Liu M., Pei H., Jin T., Yu D., Zhou P. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J. Clin. Invest., 2020, vol. 130, no. 12, pp. 6588–6599. doi: 10.1172/JCI141054
- Hartling H.J., Gaardbo J.C., Ronit A., Salem M., Laye M., Clausen M.R., Skogstrand K., Gerstoft J., Ullum H., Nielsen S.D. Impaired thymic output in patients with chronic hepatitis C virus infection. Scand. J. Immunol., 2013, vol. 78, no. 4, pp. 378–386. doi: 10.1111/sji.12096
- Khadzhieva M.B., Kalinina E.V., Larin S.S., Sviridova D.A., Gracheva A.S., Chursinova J.V., Stepanov V.A., Redkin I.V., Avdeikina L.S., Rumyantsev A.G., Kuzovlev A.N., Salnikova L.E. TREC/KREC Levels in Young COVID-19 Patients. Diagnostics (Basel), 2021, vol. 11, no. 8: 1486. doi: 10.3390/diagnostics11081486
- Kohler S., Thiel A. Life after the thymus: CD31+ and CD31– human naive CD4+ T-cell subsets. Blood, 2009, vol. 113, no. 4, pp. 769–774. doi: 10.1182/blood-2008-02-139154
- Kudryavtsev I., Rubinstein A., Golovkin A., Kalinina O., Vasilyev K., Rudenko L., Isakova-Sivak I. Dysregulated immune responses in SARS-CoV-2-infected patients: a comprehensive overview. Viruses, 2022, vol. 14, no. 5: 1082. doi: 10.3390/v14051082
- Kudryavtsev I.V., Arsentieva N.A., Korobova Z.R., Isakov D.V., Rubinstein A.A., Batsunov O.K., Khamitova I.V., Kuznetsova R.N., Savin T.V., Akisheva T.V., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Sharapova M.A., Pevtsov D.E., Totolian A.A. Heterogenous CD8+ T cell maturation and ‘polarization’ in acute and convalescent COVID-19 patients. Viruses, 2022, vol. 14, no. 9: 1906. doi: 10.3390/v14091906
- Kuri-Cervantes L., Pampena M.B., Meng W., Rosenfeld A.M., Ittner C.A.G., Weisman A.R., Agyekum R.S., Mathew D., Baxter A.E., Vella L.A., Kuthuru O., Apostolidis S.A., Bershaw L., Dougherty J., Greenplate A.R., Pattekar A., Kim J., Han N., Gouma S., Weirick M.E., Arevalo C.P., Bolton M.J., Goodwin E.C., Anderson E.M., Hensley S.E., Jones T.K., Mangalmurti N.S., Luning Prak E.T., Wherry E.J., Meyer N.J., Betts M.R. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci. Immunol., 2020, vol. 5, no. 49: eabd7114 doi: 10.1126/sciimmunol.abd7114
- Liu J., Li S., Liu J., Liang B., Wang X., Wang H., Li W., Tong Q., Yi J., Zhao L., Xiong L., Guo C., Tian J., Luo J., Yao J., Pang R., Shen H., Peng C., Liu T., Zhang Q., Wu J., Xu L., Lu S., Wang B., Weng Z., Han C., Zhu H., Zhou R., Zhou H., Chen X., Ye P., Zhu B., Wang L., Zhou W., He S., He Y., Jie S., Wei P., Zhang J., Lu Y., Wang W., Zhang L., Li L., Zhou F., Wang J., Dittmer U., Lu M., Hu Y., Yang D., Zheng X. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine, 2020, vol. 55: 102763. doi: 10.1016/j.ebiom.2020.102763.
- Mann E.R., Menon M., Knight S.B., Konkel J.E., Jagger C., Shaw T.N., Krishnan S., Rattray M., Ustianowski A., Bakerly N.D., Dark P., Lord G., Simpson A., Felton T., Ho L.P., NIHR Respiratory TRC, Feldmann M., CIRCO, Grainger J.R., Hussell T. Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19. Sci. Immunol., 2020, vol. 5, no. 51: eabd6197. doi: 10.1126/sciimmunol.abd6197
- Martín-Sánchez E., Garcés J.J., Maia C., Inogés S., López-Díaz de Cerio A., Carmona-Torre F., Marin-Oto M., Alegre F., Molano E., Fernandez-Alonso M., Perez C., Botta C., Zabaleta A., Alcaide A.B., Landecho M.F., Rua M., Pérez-Warnisher T., Blanco L., Sarvide S., Vilas-Zornoza A., Alignani D., Moreno C., Pineda I., Sogbe M., Argemi J., Paiva B., Yuste J.R. Immunological biomarkers of fatal COVID-19: a study of 868 patients. Front. Immunol., 2021, vol. 12: 659018. doi: 10.3389/fimmu.2021.659018
- Mathew D., Giles J.R., Baxter A.E., Oldridge D.A., Greenplate A.R., Wu J.E., Alanio C., Kuri-Cervantes L., Pampena M.B., D’Andrea K., Manne S., Chen Z., Huang Y.J., Reilly J.P., Weisman A.R., Ittner C.A.G., Kuthuru O., Dougherty J., Nzingha K., Han N., Kim J., Pattekar A., Goodwin E.C., Anderson E.M., Weirick M.E., Gouma S., Arevalo C.P., Bolton M.J., Chen F., Lacey S.F., Ramage H., Cherry S., Hensley S.E., Apostolidis S.A., Huang A.C., Vella L.A., UPenn COVID Processing Unit, Betts M.R., Meyer N.J., Wherry E.J. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 2020, vol. 369, no. 6508: eabc8511. doi: 10.1126/science.abc8511
- Mok C.C., Chu C.S., Tse S.M. De novo lupus nephritis after SARS-CoV-2 infection. Lupus, 2023: 9612033231175280. doi: 10.1177/09612033231175280
- Novelli L., Motta F., Ceribelli A., Guidelli G.M., Luciano N., Isailovic N., Vecellio M., Caprioli M., Clementi N., Clementi M., Mancini N., Selmi C., De Santis M. A case of psoriatic arthritis triggered by SARS-CoV-2 infection. Rheumatology (Oxford), 2021, vol. 60, no. 1, pp. e21–e23. doi: 10.1093/rheumatology/keaa691
- Orologas-Stavrou N., Politou M., Rousakis P., Kostopoulos I.V., Ntanasis-Stathopoulos I., Jahaj E., Tsiligkeridou E., Gavriatopoulou M., Kastritis E., Kotanidou A., Dimopoulos M.A., Tsitsilonis O.E., Terpos E. Peripheral blood immune profiling of convalescent plasma donors reveals alterations in specific immune subpopulations even at 2 months post SARS-CoV-2 infection. Viruses, 2020, vol. 13, no. 1: 26. doi: 10.3390/v13010026
- Ramachandran L., Dontaraju V.S., Troyer J., Sahota J. New onset systemic lupus erythematosus after COVID-19 infection: a case report. AME Case Rep., 2022, vol. 6: 14. doi: 10.21037/acr-21-55
- Ramos-Casals M., Brito-Zerón P., Mariette X. Systemic and organ-specific immune-related manifestations of COVID-19. Nat. Rev. Rheumatol., 2021, vol. 17, no. 6, pp. 315–332. doi: 10.1038/s41584-021-00608-z
- Rosichini M., Bordoni V., Silvestris D.A., Mariotti D., Matusali G., Cardinale A., Zambruno G., Condorelli A.G., Flamini S., Genah S., Catanoso M., Del Nonno F., Trezzi M., Galletti L., De Stefanis C., Cicolani N., Petrini S., Quintarelli C., Agrati C., Locatelli F., Velardi E. SARS-CoV-2 infection of thymus induces loss of function that correlates with disease severity. J. Allergy Clin. Immunol., 2023, vol. 151, pp. 911–921. doi: 10.1016/j.jaci.2023.01.022
- Rubinstein A., Kudryavtsev I., Malkova A., Mammedova J., Isakov D., Isakova-Sivak I., Kudlay D., Starshinova A. Sarcoidosis-related autoimmune inflammation in COVID-19 convalescent patients. Front. Med., 2023, vol. 10: 1271198. doi: 10.3389/fmed.2023.1271198
- Savchenko A.A., Tikhonova E., Kudryavtsev I., Kudlay D., Korsunsky I., Beleniuk V., Borisov A. TREC/KREC Levels and T and B Lymphocyte Subpopulations in COVID-19 Patients at Different Stages of the Disease. Viruses, 2022, vol. 14, no. 3: 646. doi: 10.3390/v14030646
- Sette A., Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, 2021, vol. 184, no. 4, pp. 861–880. doi: 10.1016/j.cell.2021.01.007
- Shuwa H.A., Shaw T.N., Knight S.B., Wemyss K., McClure F.A., Pearmain L., Prise I., Jagger C., Morgan D.J., Khan S., Brand O., Mann E.R., Ustianowski A., Bakerly N.D., Dark P., Brightling C.E., Brij S., CIRCO, Felton T., Simpson A., Grainger J.R., Hussell T., Konkel J.E., Menon M. Alterations in T and B cell function persist in convalescent COVID-19 patients. Med (N Y)., 2021, vol. 2, no. 6, pp. 720–735.e4. doi: 10.1016/j.medj.2021.03.013
- Smatti M.K., Cyprian F.S., Nasrallah G.K., Al Thani A.A., Almishal R.O., Yassine H.M. Viruses and autoimmunity: a review on the potential interaction and molecular mechanisms. Viruses, 2019, vol. 11, no. 8, pp. 762 doi: 10.3390/v11080762
- Sundaresan B., Shirafkan F., Ripperger K., Rattay K. The role of viral infections in the onset of autoimmune diseases. Viruses, 2023, vol. 15, no. 3: 782. doi: 10.3390/v15030782
- Yuki K., Fujiogi M., Koutsogiannaki S. COVID-19 pathophysiology: a review. Clin. Immunol., 2020, vol. 215: 108427. doi: 10.1016/j.clim.2020.108427
- Zhao B., Zhong M., Yang Q., Hong K., Xia J., Li X., Liu Y., Chen Y.Q., Yang J., Huang C., Yan H. Alterations in phenotypes and responses of T cells within 6 months of recovery from COVID-19: a cohort study. Virol. Sin., 2021, vol. 9, pp. 1–10. doi: 10.1007/s12250-021-00348-0
Supplementary files
