Alterations in T cell immunity over 6–12 months post-COVID-19 infection in convalescent individuals: a screening study

Cover Page

Cite item

Full Text

Abstract

Acute COVID-19 is a viral infection caused by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that results in dramatically decreased peripheral blood CD3+ T cell count apparently due to alterations of thymic T cell maturation, that can persist long term afterwards. Therefore, we analyzed the levels of peripheral blood TRECs (T-cell receptor excision circles), and investigated the main alterations in peripheral blood T cell subsets in COVID-19 convalescents. We performed molecular quantification of TRECs with “TREC/KREC-AMP PS” kit and flow cytometric analysis of peripheral blood lymphocytes from three groups of patients. The first group contained 109 samples from COVID-19 convalescents (6–12 month post-acute COVID-19) with normal levels of TRECs (TRECn); the second was formed from COVID-19 convalescents (6–12 month post-acute COVID-19) with decreased levels of TRECs (TREClow, n = 29), and healthy control group (HC, n = 18). We noticed no significant differences between all three groups in CD3+ T cell relative and absolute numbers. However, CD4+ T cell frequencies were decreased in TREClow and TRECn groups compared to HC (40.8% (31.6; 50.1) and 46.4% (40.0; 53.0) vs 53.5% (47.36; 56.9), p < 0.001 and р = 0.004, respectively). Furthermore, Th cell levels were decreased in TREClow patients vs HC and TRECn groups (701 cell/1 µL (478; 807) vs 1005 cell/1 µL (700; 1419), р = 0.020, and 876 cell/ 1 µL (661; 1046), р = 0.008, respectively). Finally, both groups of COVID-19 convalescents had increased frequencies of circulating CD8+ T cells — 29.4% (20.7; 39.7) in TREClow group, 26.5% (21.1; 32.7) in TRECn group vs 21.3% (17.1; 26.0) in healthy controls (p = 0.024 and р = 0.026, respectively). In TRECn group, CD8+ T cell count was elevated vs control range (508 cell/1 µL (372; 622) vs 356 cell/1 µL (247; 531), р = 0.044). Thus, COVID-19 convalescents (6–12 month post-acute COVID-19) showed an imbalance in CD4+ and CD8+ T cell level even at 6–12 months post-acute SARS-CoV-2 infection, and the observed changes in peripheral blood T cells could be closely related to the alterations in thymic T cell maturation and differentiation. Such a long-term decline in TREC levels in the circulation may have a profound impact on immune system functions and requires immunocorrection therapy.

About the authors

A. V. Zurochka

Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences; Federal Research Institute of Viral Infections “Virom”

Email: igorek1981@yandex.ru

DSc (Medicine), Professor, Honored Scientist of the Russian Federation, Leading Researcher, Laboratory of Immunopathophysiology; Leading Researcher, Laboratory of Transmissible Viral Diseases

Russian Federation, Yekaterinburg; Ekaterinburg

M. А. Dobrynina

Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences; Federal Research Institute of Viral Infections “Virom”; State Research Center of the Russian Federation — Federal Medical Biophysical Center named after A.I. Burnazyan of the Federal Medical and Biological Agency of the Russian Federation

Email: igorek1981@yandex.ru

PhD (Medicine), Associate Professor, Researcher, Laboratory of Immunopathophysiology; Senior Researcher, Laboratory of Transmissible Viral Diseases; Associate Professor, Department of Internal Medicine, Medical and Biological University of Innovation and Continuing Education

Russian Federation, Yekaterinburg; Yekaterinburg; Moscow

E. A. Safronova

State Research Center of the Russian Federation — Federal Medical Biophysical Center named after A.I. Burnazyan of the Federal Medical and Biological Agency of the Russian Federation; South Ural State Medical University

Email: igorek1981@yandex.ru

PhD (Medicine), Associate Professor, Associate Professor of the Department of Polyclinic Therapy and Clinical Pharmacology; Lecturer at the Department of Therapy

Russian Federation, Moscow; Chelyabinsk

V. A. Zurochka

Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences; Federal Research Institute of Viral Infections “Virom”

Email: igorek1981@yandex.ru

DSc (Medicine), Senior Researcher; Senior Researcher, Biotechnology Laboratory, Russian-Chinese Center

Russian Federation, Yekaterinburg; Ekaterinburg

A. A. Zuikova

Federal Research Institute of Viral Infections “Virom”

Email: igorek1981@yandex.ru

Intern of the Laboratory of Transmissible Viral Diseases

Russian Federation, Ekaterinburg

G. P. Sarapultsev

354 Military Clinical Hospital of the Russian Ministry of Defense

Email: igorek1981@yandex.ru

Head of Endoscopy Department

Russian Federation, Ekaterinburg

O. I. Zabkov

Federal Research Institute of Viral Infections “Virom”

Email: igorek1981@yandex.ru

Researcher, Laboratory of Transmissible Viral Diseases

Russian Federation, Ekaterinburg

A. A. Mosunov

Federal Research Institute of Viral Infections “Virom”; Chelyabinsk State University

Email: igorek1981@yandex.ru

Student; Intern of the Laboratory of Transmissible Viral Diseases

Russian Federation, Ekaterinburg; Chelyabinsk

M. D. Verkhovskaya

Federal Research Institute of Viral Infections “Virom”; Chelyabinsk State University

Email: igorek1981@yandex.ru

Student; Intern of the Laboratory of Transmissible Viral Diseases

Russian Federation, Ekaterinburg; Chelyabinsk

V. V. Ducardt

Federal Research Institute of Viral Infections “Virom”

Email: igorek1981@yandex.ru

Senior Researcher, Laboratory of Transmissible Viral Diseases

Russian Federation, Ekaterinburg

L. O. Fomina

Federal Research Institute of Viral Infections “Virom”

Email: igorek1981@yandex.ru

Researcher, Laboratory of Transmissible Viral Diseases

Russian Federation, Ekaterinburg

E. G. Kostolomova

Tyumen State Medical University

Email: igorek1981@yandex.ru

PhD (Biology), Associate Professor, Department of Microbiology

Russian Federation, Tyumen

Yu. V. Ostankova

St. Petersburg Pasteur Institute

Email: igorek1981@yandex.ru

PhD (Biology), Head of the Laboratory of immunology and Virology HIV Infection, Senior Researcher of the Laboratory of Molecular Immunology

Russian Federation, St. Petersburg

Igor V. Kudryavtsev

Institute of Experimental Medicine

Author for correspondence.
Email: igorek1981@yandex.ru

PhD (Biology), Head of the Cell Immunology Laboratory, Department of Immunology

Russian Federation, St. Petersburg

A. A. Totolian

St. Petersburg Pasteur Institute

Email: igorek1981@yandex.ru

RAS Full Member, DSc (Medicine), Professor, Head of the Laboratory of Molecular Immunology, Director

Russian Federation, St. Petersburg

References

  1. Гордукова М.А., Корсунский И.А., Чурсинова Ю.В., Бяхова М.М., Оскорбин И.П., Продеус А.П., Филипенко М.Л. Определение референсных интервалов TREC и KREC для скрининга новорожденных с иммунодефицитными состояниями в РФ // Медицинская иммунология. 2019. Т. 21, № 3. С. 527–538. [Gordukova M.A., Korsunsky I.A., Chursinova Yu.V., Byakhova M.M., Oscorbin I.P., Prodeus A.P., Filipenko M.L. Determining reference ranges for TREC and KREC assays in immune deficiency screening of newborns in Russian Federation. Meditsinskaya immunologiya = Medical Immunology (Russia), 2019, vol. 21, no. 3, pp. 527–538. (In Russ.)] doi: 10.15789/1563-0625-2019-3-527-538
  2. Добрынина М.А., Зурочка А.В., Зурочка В.А., Рябова Л.В., Сарапульцев А.П. Формирование подходов к иммунокоррекции нарушений иммунной системы у постковидных пациентов // Российский иммунологический журнал. 2023. Т. 26, № 4. С. 641–646. [Dobrynina M.A., Zurochka A.V., Zurochka V.A., Ryabova L.V., Sarapultsev A.P. Approaches to correction of immune system disturbances in post-COVID patients. Rossiiskii immunologicheskii zhurnal = Russian Journal of Immunology, 2023, vol. 26, no. 4, pp. 641–646. (In Russ.)] doi: 10.46235/1028-7221-13492-ATC
  3. Добрынина М.А., Ибрагимов Р.В., Крицкий И.С., Верховская М.Д., Мосунов А.А., Сарапульцев Г.П., Зурочка А.В., Зурочка В.А., Сарапульцев А.П., Комелькова М.В., Рябова Л.В., Праскурничий Е.А. Постковидный синдром иммунопатологии. Характеристика фенотипических изменений иммунной системы у постковидных пациентов // Медицинская иммунология. 2023. Т. 25, № 4. С. 791–796. [Dobrynina M.A., Ibragimov R.V., Kritsky I.S., Verkhovskaya M.D., Mosunov A.A., Sarapultsev G.P., Zurochka A.V., Zurochka V.A., Sarapultsev A.P., Komelkova M.V., Ryabova L.V., Praskurnichiy E.A. Post-COVID immunopatology syndrome: characteristics of phenotypical changes in the immune system in post-COVID patients. Meditsinskaya immunologiya = Medical Immunology (Russia), 2023, vol. 25, no. 4, pp. 791–796. (In Russ.)] doi: 10.15789/1563-0625-PCI-2707
  4. Сайтгалина М.А., Любимова Н.Е., Останкова Ю.В., Кузнецова Р.Н., Тотолян Арег А. Определение референтных интервалов циркулирующих в крови эксцизионных колец TREC и KREC у лиц старше 18 лет // Медицинская иммунология. 2022. Т. 24, № 6. С. 1227–1236. [Saitgalina M.A., Liubimova N.E., Ostankova Yu.V., Kuznetzova R.N., Totolian A.A. Determination of reference values for TREC and KREC in circulating blood of the persons over 18 years. Meditsinskaya immunologiya = Medical Immunology (Russia), 2022, vol. 24, no. 6, pp. 1227–1236. (In Russ.)] doi: 10.15789/1563-0625-DOR-2587
  5. Сайтгалина М.А., Останкова Ю.В., Арсентьева Н.А., Коробова З.Р., Любимова Н.Е., Кащенко В.А., Куликов А.Н., Певцов Д.Э., Станевич О.В., Черных Е.И., Тотолян А.А. Оценка уровней молекул TREC и KREC у больных COVID-19 с разной степенью тяжести течения заболевания // Инфекция и иммунитет. 2023. Т. 13, № 5. C. 873–884. [Saitgalina M.A., Ostankova Y.V., Arsentieva N.A., Korobova Z.R., Liubimova N.E., Kashchenko V.A., Kulikov A.N., Pevtsov D.E., Stanevich O.V., Chernykh E.I., Totolian A.A. Assessment of trec and krec levels in COVID-19 patients with varying disease severity. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 5, pp. 873–884. (In Russ.)] doi: 10.15789/2220-7619-AOT-16937
  6. Сайтгалина М.А., Останкова Ю.В., Арсентьева Н.А., Коробова З.Р., Любимова Н.Е., Кащенко В.А., Куликов А.Н., Певцов Д.Э., Станевич О.В., Черных Е.И., Тотолян А.А. Значимость определения уровней молекул TREC и KREC в периферической крови для прогноза исхода заболевания COVID-19 в острый период // Российский иммунологический журнал. 2023. Т. 26, № 4. С. 611–618. [Saitgalina M.A., Ostankova Y.V., Arsentieva N.A., Korobova Z.R., Liubimova N.E., Kashchenko V.A., Kulikov A.N., Pevtsov D.E., Stanevich O.V., Chernykh E.I., Totolian A.A. Levels of TREC and KREC molecules significance determining in peripheral blood for predicting the outcome of COVID-19 disease in the acute period. Rossiiskii immunologicheskii zhurnal = Russian Journal of Immunology, 2023, vol. 26, no. 4, pp. 611–618 (In Russ.)] doi: 10.46235/1028-7221-14714-LOT
  7. Сайтгалина М.А., Останкова Ю.В., Любимова Н.Е., Семенов А.В., Кузнецова Р.Н., Тотолян А.А. Модифицированный метод количественного определения уровней TREC и KREC в периферической крови у больных с иммунодефицитными состояниями // Инфекция и иммунитет. 2022. Т. 12, № 5. C. 981–996 [Saitgalina M.A., Ostankova Y.V., Liubimova N.E., Semenov A.V., Kuznetsova R.N., Totolian A.A. Modified quantitative approach for assessing peripheral blood TREC and KREC levels in immunodeficient patients. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 5, pp. 981–996. (In Russ.)] doi: 10.15789/2220-7619-MMF-2039
  8. Ahmed S., Zimba O., Gasparyan A.Y. COVID-19 and the clinical course of rheumatic manifestations. Clin. Rheumatol., 2021, vol. 40, no. 7, pp. 2611–2619. doi: 10.1007/s10067-021-05691-x
  9. De Biasi S., Meschiari M., Gibellini L., Bellinazzi C., Borella R., Fidanza L., Gozzi L., Iannone A., Lo Tartaro D., Mattioli M., Paolini A., Menozzi M., Milić J., Franceschi G., Fantini R., Tonelli R., Sita M., Sarti M., Trenti T., Brugioni L., Cicchetti L., Facchinetti F., Pietrangelo A., Clini E., Girardis M., Guaraldi G., Mussini C., Cossarizza A. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat. Commun., 2020, vol. 11, no. 1: 3434. doi: 10.1038/s41467-020-17292-4
  10. De Bruyn A., Verellen S., Bruckers L., Geebelen L., Callebaut I., De Pauw I., Stessel B., Dubois J. Secondary infection in COVID-19 critically ill patients: a retrospective single-center evaluation. BMC Infect. Dis., 2022, vol. 22, no. 1: 207. doi: 10.1186/s12879-022-07192-x
  11. Diao B., Wang C., Tan Y., Chen X., Liu Y., Ning L., Chen L., Li M., Liu Y., Wang G., Yuan Z., Feng Z., Zhang Y., Wu Y., Chen Y. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front. Immunol., 2020, vol. 11: 827. doi: 10.3389/fimmu.2020.00827
  12. Essien F., Chastant L., McNulty C., Hubbard M., Lynette L., Carroll M. COVID-19-induced psoriatic arthritis: a case repor. Ther. Adv. Chronic Dis., 2022, vol. 13: 20406223221099333. doi: 10.1177/20406223221099333
  13. Ferrando-Martinez S., De Pablo-Bernal R.S., De Luna-Romero M., De Ory S.J., Genebat M., Pacheco Y.M., Parras F.J., Montero M., Blanco J.R., Gutierrez F., Santos J., Vidal F., Koup R.A., Muñoz-Fernández M.Á., Leal M., Ruiz-Mateos E. Thymic function failure is associated with human immunodeficiency virus disease progression. Clin. Infect. Dis., 2017, vol. 64, no. 9, pp. 1191–1197. doi: 10.1093/cid/cix095.
  14. Gold J.E., Okyay R.A., Licht W.E., Hurley D.J. Investigation of long COVID prevalence and its relationship to Epstein–Barr virus reactivation. Pathogens, 2021, vol. 10, no. 6: 763. doi: 10.3390/pathogens10060763
  15. Gong F., Dai Y., Zheng T., Cheng L., Zhao D., Wang H., Liu M., Pei H., Jin T., Yu D., Zhou P. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J. Clin. Invest., 2020, vol. 130, no. 12, pp. 6588–6599. doi: 10.1172/JCI141054
  16. Hartling H.J., Gaardbo J.C., Ronit A., Salem M., Laye M., Clausen M.R., Skogstrand K., Gerstoft J., Ullum H., Nielsen S.D. Impaired thymic output in patients with chronic hepatitis C virus infection. Scand. J. Immunol., 2013, vol. 78, no. 4, pp. 378–386. doi: 10.1111/sji.12096
  17. Khadzhieva M.B., Kalinina E.V., Larin S.S., Sviridova D.A., Gracheva A.S., Chursinova J.V., Stepanov V.A., Redkin I.V., Avdeikina L.S., Rumyantsev A.G., Kuzovlev A.N., Salnikova L.E. TREC/KREC Levels in Young COVID-19 Patients. Diagnostics (Basel), 2021, vol. 11, no. 8: 1486. doi: 10.3390/diagnostics11081486
  18. Kohler S., Thiel A. Life after the thymus: CD31+ and CD31– human naive CD4+ T-cell subsets. Blood, 2009, vol. 113, no. 4, pp. 769–774. doi: 10.1182/blood-2008-02-139154
  19. Kudryavtsev I., Rubinstein A., Golovkin A., Kalinina O., Vasilyev K., Rudenko L., Isakova-Sivak I. Dysregulated immune responses in SARS-CoV-2-infected patients: a comprehensive overview. Viruses, 2022, vol. 14, no. 5: 1082. doi: 10.3390/v14051082
  20. Kudryavtsev I.V., Arsentieva N.A., Korobova Z.R., Isakov D.V., Rubinstein A.A., Batsunov O.K., Khamitova I.V., Kuznetsova R.N., Savin T.V., Akisheva T.V., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Sharapova M.A., Pevtsov D.E., Totolian A.A. Heterogenous CD8+ T cell maturation and ‘polarization’ in acute and convalescent COVID-19 patients. Viruses, 2022, vol. 14, no. 9: 1906. doi: 10.3390/v14091906
  21. Kuri-Cervantes L., Pampena M.B., Meng W., Rosenfeld A.M., Ittner C.A.G., Weisman A.R., Agyekum R.S., Mathew D., Baxter A.E., Vella L.A., Kuthuru O., Apostolidis S.A., Bershaw L., Dougherty J., Greenplate A.R., Pattekar A., Kim J., Han N., Gouma S., Weirick M.E., Arevalo C.P., Bolton M.J., Goodwin E.C., Anderson E.M., Hensley S.E., Jones T.K., Mangalmurti N.S., Luning Prak E.T., Wherry E.J., Meyer N.J., Betts M.R. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci. Immunol., 2020, vol. 5, no. 49: eabd7114 doi: 10.1126/sciimmunol.abd7114
  22. Liu J., Li S., Liu J., Liang B., Wang X., Wang H., Li W., Tong Q., Yi J., Zhao L., Xiong L., Guo C., Tian J., Luo J., Yao J., Pang R., Shen H., Peng C., Liu T., Zhang Q., Wu J., Xu L., Lu S., Wang B., Weng Z., Han C., Zhu H., Zhou R., Zhou H., Chen X., Ye P., Zhu B., Wang L., Zhou W., He S., He Y., Jie S., Wei P., Zhang J., Lu Y., Wang W., Zhang L., Li L., Zhou F., Wang J., Dittmer U., Lu M., Hu Y., Yang D., Zheng X. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine, 2020, vol. 55: 102763. doi: 10.1016/j.ebiom.2020.102763.
  23. Mann E.R., Menon M., Knight S.B., Konkel J.E., Jagger C., Shaw T.N., Krishnan S., Rattray M., Ustianowski A., Bakerly N.D., Dark P., Lord G., Simpson A., Felton T., Ho L.P., NIHR Respiratory TRC, Feldmann M., CIRCO, Grainger J.R., Hussell T. Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19. Sci. Immunol., 2020, vol. 5, no. 51: eabd6197. doi: 10.1126/sciimmunol.abd6197
  24. Martín-Sánchez E., Garcés J.J., Maia C., Inogés S., López-Díaz de Cerio A., Carmona-Torre F., Marin-Oto M., Alegre F., Molano E., Fernandez-Alonso M., Perez C., Botta C., Zabaleta A., Alcaide A.B., Landecho M.F., Rua M., Pérez-Warnisher T., Blanco L., Sarvide S., Vilas-Zornoza A., Alignani D., Moreno C., Pineda I., Sogbe M., Argemi J., Paiva B., Yuste J.R. Immunological biomarkers of fatal COVID-19: a study of 868 patients. Front. Immunol., 2021, vol. 12: 659018. doi: 10.3389/fimmu.2021.659018
  25. Mathew D., Giles J.R., Baxter A.E., Oldridge D.A., Greenplate A.R., Wu J.E., Alanio C., Kuri-Cervantes L., Pampena M.B., D’Andrea K., Manne S., Chen Z., Huang Y.J., Reilly J.P., Weisman A.R., Ittner C.A.G., Kuthuru O., Dougherty J., Nzingha K., Han N., Kim J., Pattekar A., Goodwin E.C., Anderson E.M., Weirick M.E., Gouma S., Arevalo C.P., Bolton M.J., Chen F., Lacey S.F., Ramage H., Cherry S., Hensley S.E., Apostolidis S.A., Huang A.C., Vella L.A., UPenn COVID Processing Unit, Betts M.R., Meyer N.J., Wherry E.J. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 2020, vol. 369, no. 6508: eabc8511. doi: 10.1126/science.abc8511
  26. Mok C.C., Chu C.S., Tse S.M. De novo lupus nephritis after SARS-CoV-2 infection. Lupus, 2023: 9612033231175280. doi: 10.1177/09612033231175280
  27. Novelli L., Motta F., Ceribelli A., Guidelli G.M., Luciano N., Isailovic N., Vecellio M., Caprioli M., Clementi N., Clementi M., Mancini N., Selmi C., De Santis M. A case of psoriatic arthritis triggered by SARS-CoV-2 infection. Rheumatology (Oxford), 2021, vol. 60, no. 1, pp. e21–e23. doi: 10.1093/rheumatology/keaa691
  28. Orologas-Stavrou N., Politou M., Rousakis P., Kostopoulos I.V., Ntanasis-Stathopoulos I., Jahaj E., Tsiligkeridou E., Gavriatopoulou M., Kastritis E., Kotanidou A., Dimopoulos M.A., Tsitsilonis O.E., Terpos E. Peripheral blood immune profiling of convalescent plasma donors reveals alterations in specific immune subpopulations even at 2 months post SARS-CoV-2 infection. Viruses, 2020, vol. 13, no. 1: 26. doi: 10.3390/v13010026
  29. Ramachandran L., Dontaraju V.S., Troyer J., Sahota J. New onset systemic lupus erythematosus after COVID-19 infection: a case report. AME Case Rep., 2022, vol. 6: 14. doi: 10.21037/acr-21-55
  30. Ramos-Casals M., Brito-Zerón P., Mariette X. Systemic and organ-specific immune-related manifestations of COVID-19. Nat. Rev. Rheumatol., 2021, vol. 17, no. 6, pp. 315–332. doi: 10.1038/s41584-021-00608-z
  31. Rosichini M., Bordoni V., Silvestris D.A., Mariotti D., Matusali G., Cardinale A., Zambruno G., Condorelli A.G., Flamini S., Genah S., Catanoso M., Del Nonno F., Trezzi M., Galletti L., De Stefanis C., Cicolani N., Petrini S., Quintarelli C., Agrati C., Locatelli F., Velardi E. SARS-CoV-2 infection of thymus induces loss of function that correlates with disease severity. J. Allergy Clin. Immunol., 2023, vol. 151, pp. 911–921. doi: 10.1016/j.jaci.2023.01.022
  32. Rubinstein A., Kudryavtsev I., Malkova A., Mammedova J., Isakov D., Isakova-Sivak I., Kudlay D., Starshinova A. Sarcoidosis-related autoimmune inflammation in COVID-19 convalescent patients. Front. Med., 2023, vol. 10: 1271198. doi: 10.3389/fmed.2023.1271198
  33. Savchenko A.A., Tikhonova E., Kudryavtsev I., Kudlay D., Korsunsky I., Beleniuk V., Borisov A. TREC/KREC Levels and T and B Lymphocyte Subpopulations in COVID-19 Patients at Different Stages of the Disease. Viruses, 2022, vol. 14, no. 3: 646. doi: 10.3390/v14030646
  34. Sette A., Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, 2021, vol. 184, no. 4, pp. 861–880. doi: 10.1016/j.cell.2021.01.007
  35. Shuwa H.A., Shaw T.N., Knight S.B., Wemyss K., McClure F.A., Pearmain L., Prise I., Jagger C., Morgan D.J., Khan S., Brand O., Mann E.R., Ustianowski A., Bakerly N.D., Dark P., Brightling C.E., Brij S., CIRCO, Felton T., Simpson A., Grainger J.R., Hussell T., Konkel J.E., Menon M. Alterations in T and B cell function persist in convalescent COVID-19 patients. Med (N Y)., 2021, vol. 2, no. 6, pp. 720–735.e4. doi: 10.1016/j.medj.2021.03.013
  36. Smatti M.K., Cyprian F.S., Nasrallah G.K., Al Thani A.A., Almishal R.O., Yassine H.M. Viruses and autoimmunity: a review on the potential interaction and molecular mechanisms. Viruses, 2019, vol. 11, no. 8, pp. 762 doi: 10.3390/v11080762
  37. Sundaresan B., Shirafkan F., Ripperger K., Rattay K. The role of viral infections in the onset of autoimmune diseases. Viruses, 2023, vol. 15, no. 3: 782. doi: 10.3390/v15030782
  38. Yuki K., Fujiogi M., Koutsogiannaki S. COVID-19 pathophysiology: a review. Clin. Immunol., 2020, vol. 215: 108427. doi: 10.1016/j.clim.2020.108427
  39. Zhao B., Zhong M., Yang Q., Hong K., Xia J., Li X., Liu Y., Chen Y.Q., Yang J., Huang C., Yan H. Alterations in phenotypes and responses of T cells within 6 months of recovery from COVID-19: a cohort study. Virol. Sin., 2021, vol. 9, pp. 1–10. doi: 10.1007/s12250-021-00348-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Peripheral blood T cell frequencies in COVID-19 convalescents with varying TRECs levels. Note. The obtained data are presented as percent of cells within total lymphocyte subset (%, left), as well as absolute numbers (the number of cells in 1 μL of whole peripheral blood, right). Each dot represents individual subjects, and horizontal bars depict the group medians and quartile ranges [Med (Q25; Q75)]. The statistical analysis was performed with the Mann–Whitney U test. Here and on the Fig. 2 and 3: white circles denote healthy control group (HC, n = 18); black circles — convalescent COVID-19 individuals with normal levels of TRECs (TRECn, n = 109); black squares — convalescent COVID-19 individuals with low levels of TRECs (TREClow, n = 29).

Download (299KB)
3. Figure 2. CD4+ T cells frequencies in peripheral blood samples from COVID-19 convalescents with different levels of TRECs. Note. The obtained data are presented as percent of cells within total lymphocyte subset (%, left), as well as absolute numbers (the number of cells in 1 μL of whole peripheral blood, right). Each dot represents individual subjects, and horizontal bars depict the group medians and quartile ranges [Med (Q25; Q75)]. The statistical analysis was performed with the Mann–Whitney U test.

Download (399KB)
4. Figure 3. CD8+ T cells frequencies in peripheral blood samples from COVID-19 convalescents with different levels of TRECs. Note. The obtained data are presented as percent of cells within total lymphocyte subset (%, left), as well as absolute numbers (the number of cells in 1 μL of whole peripheral blood, right). Each dot represents individual subjects, and horizontal bars depict the group medians and quartile ranges [Med (Q25; Q75)]. The statistical analysis was performed with the Mann–Whitney U test.

Download (354KB)
5. Figure 4. Significant correlations between flow cytometric data based on monoclonal antibodies, manufactured by “Alkor Bio” (Russia) and “Beckman Coulter Inc.” (USA). Note. Correlation analysis was performed using Spearman’s correlation coefficient.

Download (696KB)

Copyright (c) 2024 Zurochka A.V., Dobrynina M.А., Safronova E.A., Zurochka V.A., Zuikova A.A., Sarapultsev G.P., Zabkov O.I., Mosunov A.A., Verkhovskaya M.D., Ducardt V.V., Fomina L.O., Kostolomova E.G., Ostankova Y.V., Kudryavtsev I.V., Totolian A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».