HIV protein profile characteristics in patients with first-time detected infection
- Authors: Davydenko V.S.1, Ostankova Y.V.1, Schemelev A.N.1, Serikova E.N.1, Totolian A.A.1,2
-
Affiliations:
- St. Petersburg Pasteur Institute
- I. Pavlov First St. Petersburg State Medical University
- Issue: Vol 14, No 4 (2024)
- Pages: 795-808
- Section: ORIGINAL ARTICLES
- URL: https://journal-vniispk.ru/2220-7619/article/view/268713
- DOI: https://doi.org/10.15789/2220-7619-HPP-17668
- ID: 268713
Cite item
Full Text
Abstract
The HIV-infection continues to be one of the most large-scale epidemics worldwide. Many techniques have been developed to detect this disease, but the Western blot based on the identification of specific viral proteins remains the most commonly used method that allows to monitor ongoing viral processes. Despite discussions regarding the criteria for a positive test assessment and selection of a minimum number of viral proteins to reliably interpret the data, a very few studies on the protein profiles in HIV-infected patients, particularly in the Russian Federation are available. The aim of this study was to assess the prevalence of HIV viral proteins in a group of people with newly diagnosed infections analyzing 2566 blood samples from individuals with newly diagnosed HIV infection for reference testing. The samples were assessed using ELISA and IHL techniques, followed by western blotting. Subsequently, the following viral proteins were analyzed to assess HIV life cycle and the predominance of its different stages: gp160, gp120, gp41, p55, p40, p24, p17, p66, p51, and p31. For comparison, gp110/120 was chosen as the reference protein due to its lowest prevalence frequency among all env gene products comprising 96.06%. A significantly reduced prevalence frequency was found for several protein groups: GAG — p55 (80.91%), p40 (72.14%), nucleocapsid p18/17 (67.37%); POL proteins — p68/66 (89.57%), p52/51 (81.91%), p34/31 (86.02%). Significant differences in frequency of viral proteins between age and sex groups are shown. Hypotheses explaining the obtained data are presented. By aligning anti-viral protein antibody profile with the course of the infection and patient’s condition, it will be possible to identify patterns and take necessary measures for early diagnostics with extended results, such as duration of the infection, viral load, and disease severity.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
V. S. Davydenko
St. Petersburg Pasteur Institute
Email: shenna1@yandex.ru
Junior Researcher, Laboratory of Immunology and Virology of HIV Infection, PhD Student
Russian Federation, St. PetersburgYuliia V. Ostankova
St. Petersburg Pasteur Institute
Author for correspondence.
Email: shenna1@yandex.ru
PhD (Biology), Head of the Laboratory of Immunology and Virology HIV-Infection; Senior Researcher, Laboratory of Molecular Immunology
Russian Federation, St. PetersburgA. N. Schemelev
St. Petersburg Pasteur Institute
Email: shenna1@yandex.ru
Junior Researcher, Laboratory of Immunology and Virology of HIV Infection
Russian Federation, St. PetersburgE. N. Serikova
St. Petersburg Pasteur Institute
Email: shenna1@yandex.ru
Researcher, Laboratory of Immunology and Virology of HIV Infection
Russian Federation, St. PetersburgA. A. Totolian
St. Petersburg Pasteur Institute; I. Pavlov First St. Petersburg State Medical University
Email: shenna1@yandex.ru
RAS Full Member, DSc (Medicine), Professor, Head of the Laboratory of Mollecular Immunology, Director; Head of the Department of Immunology
Russian Federation, St. Petersburg; St. PetersburgReferences
- Ануфриева Е.В., Серикова Е.Н., Останкова Ю.В., Щемелев А.Н., Давыденко В.С., Рейнгардт Д.Э., Зуева Е.Б., Тотолян А.А. Структура распределения маркеров некоторых гемоконтактных инфекций среди лиц из пенитенциарных учреждений // ВИЧ-инфекция и иммуносупрессии. 2023. Т. 15, № 3. С. 95–104. [Anufrieva E.V., Serikova E.N., Ostankova Yu.V., Shchemelev A.N., Davydenko V.S., Reingardt D.E., Zueva E.B., Totolian A.A. The structure of some blood-borne infections distribution among persons from penitentiary institutions the markers. VICh-infektsiya i immunosupressii = HIV Infection and Immunosuppressive Disorders, 2023, vol. 15, no. 3, pp. 95–104. (In Russ.)] doi: 10.22328/2077-9828-2023-15-3-95-104
- Балде A.Л., Щемелев А.Н., Останкова Ю.В., Бумбали С., Валутите Д.Э., Давыденко В.С., Серикова Е.Н., Зуева Е.Б., Ануфриева Е.В., Скворода В.В., Васильева Д.А., Эсауленко Е.В., Семенов А.В., Тотолян А.А. ВИЧ у беременных женщин Гвинейской Республики: частота встречаемости и молекулярно-генетические особенности // ВИЧ-инфекция и иммуносупрессии. 2023. Т. 15, № 2. С. 59–69. [Balde T., Shchemelev A.N., Ostankova Yu.V., Boumbaly S., Valutite D.E., Davydenko V.S., Serikova E.N., Zueva E.B., Anufrieva E.V., Skvoroda V.V., Vasileva D.A., Esaulenko E.V., Semenov A.V., Totolian A.A. HIV in pregnant women group in the Republic of Guinea: frequency and genetic characteristics. VICh-infektsiya i immunosupressii = HIV Infection and Immunosuppressive Disorders, 2023, vol. 15, no. 2, pp. 48–58. (In Russ.)] doi: 10.22328/2077-9828-2023-15-2-48-58
- Мулик А.Б., Улесикова И.В., Мулик И.Г., Назаров Н.О., Попов С.Ф., Шатыр Ю.А. Гендерная специфика поведенческого риска ВИЧ-инфицирования // Экология человека. 2020. Т. 27, № 1. С. 50–58. [Mulik A.B., Ulesikova I.V., Mulik I.G., Nazarov N.O., Popov S.F., Shatyr Y.A. Gender peculiarities of behavioral risk of hiv infection. Ekologiya cheloveka = Human Ecology, 2020, vol. 27, no. 1, pp. 50–58. (In Russ.)] 10.33396/1728-0869-2020-1-50-58
- О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2022 году: Государственный доклад. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2023. 386 c. [On the state of sanitary and epidemiological welfare of the population in the Russian Federation in 2022: State report. Moscow: Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2023. 386 p. (In Russ.)] URL: https://rospotrebnadzor.ru/upload/iblock/b50/t4kqksh4b12a2iwjnha29922vu7naki5/GD-SEB.pdf
- Останкова Ю.В., Давыденко В.С., Щемелев А.Н., Зуева Е.Б., Виролайнен П.А., Тотолян Арег А. Определение тропизма ВИЧ у лиц с вирусологической неэффективностью антиретровирусной терапии в Архангельской области // Проблемы особо опасных инфекций. 2022. № 3. С. 120–128. [Ostankova Yu.V., Davydenko V.S., Shchemelev A.N., Zueva E.B., Virolainen P.A., Totolian A.A. Determination of HIV Tropism in Patients with Antiretroviral Therapy Failure in Arkhangelsk Region. Problemy osobo opasnykh infektsiy = Problems of Particularly Dangerous Infections, 2022, no. 3, pp. 120–128. (In Russ.)] doi: 10.21055/0370-1069-2022-3-120-128
- Справка «ВИЧ-инфекция в Российской Федерации на 31 декабря 2020 г.». ФБУН Центральный НИИ эпидемиологии Роспотребнадзора, Федеральный научно-методический центр по профилактике и борьбе со СПИДом, 2020. [Reference “HIV infection in the Russian Federation as of 31 December 2020”. Central Research Institute of Epidemiology of Rospotrebnadzor, Federal Scientific and Methodological Centre for AIDS Prevention and Control, 2020. (In Russ.)]
- Угроза ВИЧ/СПИД: оценка уровня информированности и готовности работодателей (объединений и руководителей предприятий) противостоять данной угрозе: Социологическое исследование (1 этап). Женева: Международное бюро труда, 2007. [The HIV/AIDS Threat: Assessing the Awareness and Willingness of Employers (Associations and Managers) to Address the Threat: A Sociological Study (Phase 1). Geneva: International Labour Office, 2007. (In Russ.)]
- Черешнев В.А., Бажан С.И., Бахметьев Б.А., Гайнова И.А., Бочаров Г.А. Системный анализ патогенеза ВИЧ-инфекции // Успехи современной биологии. 2012. Т. 132, № 2. С. 115–140. [Chereshnev V.A., Bazhan S.I., Bakmetyev B.A., Gainova I.A., Bocharov G.A. Systems analysis of HIV pathogenesis. Uspehi sovremennoj biologii = Advances in Modern Biology, 2012, vol. 132, no. 2, pp. 115–140. (In Russ.)]
- Arhel N., Kirchhoff F. Host proteins involved in HIV infection: new therapeutic targets. Biochim. Biophys. Acta, 2010, vol. 1802, no. 3, pp. 313–321. doi: 10.1016/j.bbadis.2009.12.003
- Buck C.B., Shen X., Egan M.A., Pierson T.C., Walker C.M., Siliciano R.F. The human immunodeficiency virus type 1 gag gene encodes an internal ribosome entry site. J. Virol., 2001, vol. 75, no. 1, pp. 181–191. doi: 10.1128/JVI.75.1.181-191.2001
- Centers for Disease Control (CDC). Interpretation and use of the western blot assay for serodiagnosis of human immunodeficiency virus type 1 infections. MMWR Suppl., 1989, vol. 38, no. 7, pp. 1–7
- Chiu H.C., Wang F.D., Chen Y.A., Wang C.T. Effects of human immunodeficiency virus type 1 transframe protein p6* mutations on viral protease-mediated Gag processing. J. Gen. Virol., 2006, vol. 87, pt. 7, pp. 2041–2046. doi: 10.1099/vir.0.81601-0
- De Breyne S., Chamond N., Décimo D., Trabaud M.A., André P., Sargueil B., Ohlmann T. In vitro studies reveal that different modes of initiation on HIV-1 mRNA have different levels of requirement for eukaryotic initiation factor 4F. FEBS J., 2012, vol. 279, no. 17, pp. 3098–3111. doi: 10.1111/j.1742-4658.2012.08689.x
- Esteban J.I., Shih J.W., Tai C.C., Bodner A.J., Kay J.W., Alter H.J. Importance of western blot analysis in predicting infectivity of anti-HTLV-III/LAV positive blood. Lancet, 1985, vol. 2, no. 8464, pp. 1083–1086. doi: 10.1016/s0140-6736(85)90683-x
- Fauci A.S. HIV and AIDS: 20 years of science. Nat. Med., 2003, vol. 9, no. 7, pp. 839–843. doi: 10.1038/nm0703-839
- Fiorentini S., Marini E., Caracciolo S., Caruso A. Functions of the HIV-1 matrix protein p17. New Microbiol., 2006, vol. 29, no. 1, pp. 1–10.
- Global HIV & AIDS statistics — Fact sheet / UNAIDS 2023 epidemiological estimates. URL: https://www.unaids.org/en/resources/fact-sheet (08.05.2024)
- Goudsmit J., Lange J.M., Paul D.A., Dawson G.J. Antigenemia and antibody titers to core and envelope antigens in AIDS, AIDS-related complex, and subclinical human immunodeficiency virus infection. J. Infect. Dis., 1987, vol. 155, no. 3, pp. 558–560. doi: 10.1093/infdis/155.3.558
- Hausler W.J. Jr., Getchell J.P. Report of the Fourth Consensus Conference on HIV Testing sponsored by the Association of State and Territorial Public Health Laboratory Directors (ASTPHLD). Infect. Control Hosp. Epidemiol., 1989, vol. 10, no. 8, pp. 354–367. doi: 10.1086/646045
- Hess K.L., Hu X., Lansky A., Mermin J., Hall H.I. Lifetime risk of a diagnosis of HIV infection in the United States. Ann. Epidemiol., 2017, vol. 27, no. 4, pp. 238–243. doi: 10.1016/j.annepidem.2017.02.003
- Huang S.C., Smith J.R., Moen L.K. Contribution of the p51 subunit of HIV-1 reverse transcriptase to enzyme processivity. Biochem. Biophys. Res. Commun., 1992, vol. 184, no. 2, pp. 986–992. doi: 10.1016/0006-291x(92)90688-h
- Lange J.M., Paul D.A., Huisman H.G., de Wolf F., van den Berg H., Coutinho R.A., Danner S.A., van der Noordaa J., Goudsmit J. Persistent HIV antigenaemia and decline of HIV core antibodies associated with transition to AIDS. Br. Med. J. (Clin. Res. Ed.), 1986, vol. 293, no. 6560, pp. 1459–1462. doi: 10.1136/bmj.293.6560.1459
- Mahathir M. Women at greater risk of HIV infection. Arrows Change, 1997, vol. 3, no. 1, pp. 1–2.
- McManus M., Henderson J., Gautam A., Brody R., Weiss E.R., Persaud D., Mick E., Luzuriaga K.; PACTG 356 Investigators. Quantitative Human Immunodeficiency Virus (HIV)-1 Antibodies Correlate With Plasma HIV-1 RNA and Cell-associated DNA Levels in Children on Antiretroviral Therapy. Clin. Infect. Dis., 2019, vol. 68, no. 10, pp. 1725–1732. doi: 10.1093/cid/ciy753
- McManus M., Karalius B., Patel K., Persaud D., Luzuriaga K.; Pediatric HIV/AIDS Cohort Study. Quantitative HIV-1-specific antibodies as predictors of peripheral blood cell-associated HIV-1 DNA concentrations. AIDS, 2020, vol. 34, no. 8, pp. 1117–1126. doi: 10.1097/QAD.0000000000002525
- Mehta S.U., Rupprecht K.R., Hunt J.C., Kramer D.E., McRae B.J., Allen R.G., Dawson G.J., Devare S.G. Prevalence of antibodies to the core protein P17, a serological marker during HIV-1 infection. AIDS Res. Hum. Retroviruses, 1990, vol. 6, no. 4, pp. 443–454. doi: 10.1089/aid.1990.6.443
- Miyauchi K., Curran A.R., Long Y., Kondo N., Iwamoto A., Engelman D.M., Matsuda Z. The membrane-spanning domain of gp41 plays a critical role in intracellular trafficking of the HIV envelope protein. Retrovirology, 2010, vol. 7: 95. doi: 10.1186/1742-4690-7-95
- Ostankova Y.V., Shchemelev A.N., Boumbaly S., Balde T.A.L., Zueva E.B., Valutite D.E., Serikova E.N., Davydenko V.S., Skvoroda V.V., Vasileva D.A., Semenov A.V., Esaulenko E.V., Totolian A.A. Prevalence of HIV and Viral Hepatitis Markers among Healthcare Workers in the Republic of Guinea. Diagnostics (Basel), 2023, vol. 13, no. 3: 378. doi: 10.3390/diagnostics13030378
- Shchemelev A.N., Ostankova Y.V., Zueva E.B., Semenov A.V., Totolian A.A. Detection of patient HIV-1 drug resistance mutations in Russia’s Northwestern Federal District in patients with treatment failure. Diagnostics (Basel), 2022, vol. 12, no. 8: 1821. doi: 10.3390/diagnostics12081821
- Schmidt T., Schwieters C.D., Clore G.M. Spatial domain organization in the HIV-1 reverse transcriptase p66 homodimer precursor probed by double electron-electron resonance EPR. Proc. Natl Acad. Sci. USA, 2019, vol. 116, no. 36, pp. 17809–17816. doi: 10.1073/pnas.1911086116
- Soto-Rifo R., Limousin T., Rubilar P.S., Ricci E.P., Décimo D., Moncorgé O., Trabaud M.A., André P., Cimarelli A., Ohlmann T. Different effects of the TAR structure on HIV-1 and HIV-2 genomic RNA translation. Nucleic Acids Res., 2012, vol. 40, no. 6, pp. 2653–2667. doi: 10.1093/nar/gkr1093
- Zaongo S.D., Sun F., Chen Y. Are HIV-1-specific antibody levels potentially useful laboratory markers to estimate HIV reservoir size? A Review. Front. Immunol., 2021, vol. 12: 786341. doi: 10.3389/fimmu.2021.786341
Supplementary files
