Мимикрия в белках респираторных вирусов ряда белков иммунной системы человека

Обложка

Цитировать

Полный текст

Аннотация

Проведен сравнительный анализ по поиску последовательностей аминокислот в белках вирусов, вызывающих респираторные инфекции (или синдром респираторных инфекций), гомологичных последовательностям аминокислот ряда белков иммунной системы человека. Для сравнительного компьютерного анализа были использованы следующие вирусы: коронавирус (SARS-CoV), аденовирус подгруппы С серотипа 1 (штамм adenoid 71), вирус кори (штамм ICHINOSE-BA), краснухи (штамм Therien) и респираторно-синцитиальный вирус (штамм В1). Поиск гомологичных последовательностей в структуре вирусных белков и белков иммунной системы человека осуществляли путем компьютерного сравнения в них фрагментов длиною в 12 аминокислот, принимая родственными те из них, которые проявляли идентичность по ≥ 8 позициям. Полученные данные показали, что вирусные белки содержат гомологичные фрагменты ряда белков иммунной системы хозяина, участвующих в регуляции как воспалительного, так и иммунного ответов. Так, практически для всех исследуемых вирусов характерно наличие гомологичных последовательностей к таким белкам иммунной системы хозяина, как белки системы комплемента, интегрины, апоптоз-ингибирующие белки, интерлейкины, Toll-подобные рецепторы. Эти клеточные белки принимают самое активное участие в регуляции воспалительного процесса и формировании иммунного ответа в организме хозяина. При этом набор белков иммунной системы хозяина, к которым обнаружены гомолoгичные фрагменты в вирусных белках, индивидуален для каждого исследованного вируса. Интересно отметить, что наибольшее количество гомологичных фрагментов (до 20-ти) сосредоточено, в основном, в вирусных белках, обладающих полимеразной и протеазной активностью, что дает основание предположить, что эти белки, помимо своей основной роли участие в синтезе вирусных нуклеиновых кислот, могут принимать участие в регуляции иммунной системы хозяина. В оболочечных, внутренних и неструктурных вирусных белках гомологичные фрагменты выявлены в значительно меньших количествах (от 1 до 4-х). Кроме того, в ряде вирусных белков выявлено по два фрагмента, гомологичных разным областям одного и того же клеточного белка. Таким образом, полученные данные дополняют наши представления о том, что проявления нарушений иммунной системы при вирусных инфекциях может быть результатом сложных процессов, связанных с модуляцией врожденной и адаптивной иммунной системы хозяина, и открывают новые подходы к изучению взаимодействия вирусов с иммунной системой хозяина и выявлению новых функций вирусных белков.

Об авторах

И. Н. Жилинская

ФГБУ НИИ гриппа им. А.А. Смородинцева Минздрава России

Автор, ответственный за переписку.
Email: irina@influenza.spb.ru

Жилинская Ирина Николаевна – д.б.н., ведущий научный сотрудник лаборатории системной вирусологии

197376, Санкт-Петербург, ул. Проф. Попова, 15/17
Тел.: 8 (812) 499-15-71 

Россия

Список литературы

  1. Canedo-Marroqu í n G., Acevedo-Acevedo O., Rey-Jurado E., Saavedra J.M., Lay M.K., Bueno S.M., Riedel C.A., Kalergis A.M. Modulation of host immunity by human respiratory syncytial virus virulence factors: a synergic inhibition of both innate and adaptive immunity. Front Cell Infect. Microbiol., 2017, vol. 7, pp. 367–380. doi: 10.3389/fcimb.2017.00367
  2. Dzananovic E., McKenna S.A, Patel T.R. Viral proteins targeting host protein kinase R to evade an innate immune response: a mini review. Biotechnol. Genet. Eng. Rev., 2018, vol. 34, no. 1, pp. 33–59. doi: 10.1080/02648725.2018.1467151
  3. Fonseca G.J., Thillainadesan G., Yousef A.F., Ablack J.N., Mossman K.L., Torchia J., Mymryk J.S., Adenovirus evasion of interferon-mediated innate immunity by direct antagonism of a cellular histone posttranslational modification. Cell Host Microbe, 2012, vol. 11, no. 6, pp. 597–606. doi: 10.1016/j.chom.2012.05.005
  4. Goritzka M., Pereira C., Makris S., Durant L.R., Johansson C. T cell responses are elicited against respiratory syncytial virus in the absence of signaling through TLRs, RLRs and IL-1R/IL-18R. Sci. Rep., 2015, vol. 5, pp. 18533–18550. doi: 10.1038/srep18533
  5. Griffin D.E., Plemper R.K. The immune response in measles: virus control, clearance and protective immunity. Viruses, 2016, vol. 8, no. 10, pp. 282–289. doi: 10.3390/v8100282
  6. Hendrickx R., Stichling N., Koelen J., Kuryk L., Lipiec A., Greber U.F. Innate immunity to adenovirus. Hum. Gene Ther., 2014, vol. 25, no. 4, pp. 265–284. doi: 10.1089/hum.2014.0
  7. Hulda R.J., Dijkman R. Coronaviruses and the human airway: a universal system for virus-host interaction studies. Front Microbiol., 2013, vol. 4, pp. 276–285. doi: 10.1186/s12985-016-0479-5
  8. Lecendreux M., Libri V., Jaussent I., Mottez E., Lopez R., Lavault S., Regnault A., Arnulf I., Dauvilliers Y. Impact of cytokine in type 1 narcolepsy: Role of pandemic H1N1 vaccination. J. Autoimmun., 2015, vol. 60, pp. 20–31. doi: 10.1016/j.jaut.2015.03.003
  9. Lei J., Hilgenfeld R. RNA-virus proteases counteracting host innate immunity. FEBS Lett., 2017, vol. 591, no. 20, pp. 3190–3210. doi: 10.1002/1873-3468.12827
  10. Li Y.H, Wei X., Ji S., Gui S.Y., Zhang S.M. In vivo effects of the NLRP1/NLRP3 inflammasome pathway on latent respiratory virus infection. Int. J. Mol. Med., 2018, vol. 41, no. 6, pp. 3620–3628. doi: 10.3892/ijmm.2018.3521
  11. Luo G., Ambati A., Lin L., Bonvalet M., Partinen M., Ji X., Maecker H.T., Mignot E.J. Autoimmunity to hypocretin and molecular mimicry to flu in type 1 narcolepsy. Proc. Natl Acad. Sci. USA, 2018, vol. 115, no. 52, pp. E12323–E12332. doi: 10.1073/pnas.1818150116
  12. Matthews J.D., Tzeng W.P., Frey T.K. Determinants in the maturation of rubella virus p200 replicase polyprotein precursor. J. Virol., 2012, vol. 86, no. 12, pр. 6457–6469. doi: 10.1128/JVI.06132-11
  13. Newton A.H., Cardani A., Braciale T.J. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin. Immunopathol., 2016, vol. 8, no. 4, pp. 471–482. doi: 10.1007/s00281-016-0558-0
  14. Rockx B., Donaldson E., Frieman M., Sheahan T., Corti D., Lanzavecchia A., Baric R.S. Escape from human monoclonal antibody neutralization affects in vitro and in vivo fitness of severe acute respiratory syndrome coronavirus. J. Infect. Dis., 2010, vol. 201, no. 6, pp. 946–955. doi: 10.1086/651022
  15. Saariaho A.H., Vuorela A., Freitag T.L., Pizza F., Plazzi G., Partinen M., Vaarala O., Meri S. Autoantibodies against ganglioside GM3 are associated with narcolepsy-cataplexy developing after Pandemrix vaccination against 2009 pandemic H1N1 type influenza virus. J. Autoimmun., 2015, vol. 63, pр. 68–75. doi: 10.1016/j.jaut.2015.07.006
  16. Sarkanen T.O., Alakuijala A.P.E., Dauvilliers .A., Partinen M.M. Incidence of narcolepsy after H1N1 influenza and vaccinations: Systematic review and meta-analysis. Sleep Med. Rev., 2018, vol. 38, pp. 177–186. doi: 10.1016/j.smrv.2017.06.006
  17. Totura A.L., Whitmore A., Agnihothram S., Schä fer A., Katze M.G., Heise M.T., Baric R.S. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio, 2015, vol. 26, no. 3: e00638–15. doi: 10.1128/mBio.00638-15
  18. Voelker D.R., Numata M. Phospholipid regulation of innate immunity and respiratory viral infection. J. Biol. Chem., 2019, vol. 294, no. 12, pp. 4282–4289. doi: 10.1074/jbc.AW118.003229
  19. Walter J.M., Wunderink R.G. Severe respiratory viral infections: new evidence and changing paradigms. Infect. Dis. Clin. North Am., 2017, vol. 31, no. 3, pp. 455–474. doi: 10.1016/j.idc.2017.0
  20. Zhang L., Qin Y., Chen M. Viral strategies for triggering and manipulating mitophagy. Autophagy, 2018, vol. 14, no. 10, pp. 16651673. doi: 10.1080/15548627.2018.1466014

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Жилинская И.Н., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».