СРАВНИТЕЛЬНЫЙ АНАЛИЗ МЕТОДОВ ИДЕНТИФИКАЦИИ НЕТУБЕРКУЛЕЗНЫХ МИКОБАКТЕРИЙ, ВЫДЕЛЕННЫХ ИЗ КЛИНИЧЕСКОГО МАТЕРИАЛА

Обложка

Цитировать

Полный текст

Аннотация

В последнее время наблюдается значительный рост заболеваемости микобактериозами, который обуслеовлен увеличением доли иммуносупрессированных пациентов, наличием у них различных коморбидных состояний, а также совершенствованием методов диагностики. Выбор наиболее точного метода идентификации является крайне важным в определении тактики лечения пациентов.

Цель исследования — провести сравнительный анализ современных методов идентификации  НТМБ,  выделенных из клинического материала в 2015 г. в Самарской области. В работе проводилась идентификация 78 штаммов микроорганизмов. Лабораторная диагностика проводилась с использованием метода ДНК-гибридизации  и методом MALDIToF масс-спектрометрии. 

Результаты. При идентификации  микроорганизмов с использованием MALDIToF масс-спектрометрии  было выделено 16 штаммов (20,5%) M. kansasii; по 11 штаммов (14,1%) M. avium и M. fortuitum; 9 штаммов (11,5%) M. gordonae; по 3 штамма (3,8%) M. peregrinum, M. szulgai, M. chimera intracellulare group, по 2 штамма (2,6%) M. abscessus, M. septicum, M. paragordonae, M. senegalence, по 1 штамму (1,3%) M. chelonae, M. frederiksbergense, M. monacense, M. lentiflavum. При использовании метода масс-спектрометрии было идентифицировано  15 видов НТМБ,  методом ДНК-гибридизации  — 9 видов. Полное  совпадение результатов идентификации было отмечено всего у 45 (57,7%) штаммов, несовпадающие результаты выявлены у 16 штаммов (20,5%). Наиболее часто при использовании метода ДНК-гибридизации  несовпадение было выявлено у медленнорастущих культур (9 штаммов) с преобладанием микроорганизмов,  идентифицированных  как M. gordonae. Среди представителей быстрорастущих НТМБ  было выявлено 7 расхождений в идентификации, более часто среди представителей групп M. fortuitum и M. peregrinum. Особое внимание стоит обратить на идентификацию штамма M. kansasii молекулярно-генетическим методом, который масс-спектрометрией был определен как M. bovis. Обе культуры M. tuberculosis complex, которые были идентифицированы при помощи MALDI-ToF  спектрометрии, ДНК-гибридизацией  не были определены до вида. 17 (21,8%) штаммов микроорганизмов,  которые не были идентифицированы  при использовании  метода ДНК-гибридизации, идентифицированы  с помощью спектрометрии, включая медленнорастущие микроорганизмы,  не относящиеся к микобактериям 7 штаммов (9,0%): Gordonia rubriperticta, Nocardia forcinica, Tsukumurella spp., Rhodotorula mucilaginosa. Точная видовая идентификация НТМБ является основополагающей для определения тактики лечения пациентов с микобактериозами. Возможности идентификации нетуберкулезных микобактерий с использованием метода ДНК-гибридизации являются недостаточными на сегодняшний день. Внедрение новых методов, таких как MALDI-ToF спектрометрия, позволяет идентифицировать большее количество видов нетуберкулезных микобактерий, а также другие виды медленнорастущих микроорганизмов, имеющих сходства с микобактериями по культуральным и морфологическим свойствам, что значительно повышает диагностические возможности лабораторий.

Об авторах

А. В. Лямин

Самарский государственный медицинский университет МЗ РФ

Автор, ответственный за переписку.
Email: avlyamin@rambler.ru

Лямин Артем Викторович кандидат медицинских наук, доцент кафедры общей и клинической микробиологии, иммунологии и аллергологии.

443079, Самара, ул. Гагарина, 18. Тел.: 8 (846) 260-33-61

Россия

Д. Д. Исматуллин

Самарский государственный медицинский университет МЗ РФ

Email: fake@neicon.ru

Студент 6 курса медико-профилактического факультета

А. В. Жестков

Самарский государственный медицинский университет МЗ РФ

Email: fake@neicon.ru

Доктор медицинских наук, профессор, зав. кафедрой общей и клинической микробиологии, иммунологии и аллергологии

А. М. Ковалев

Самарский областной клинический противотуберкулезный диспансер им. Н.В. Постникова

Email: fake@neicon.ru

Кандидат биологических наук, биолог бактериологической лаборатории

Л. А. Барышникова

Самарский областной клинический противотуберкулезный диспансер им. Н.В. Постникова

Email: fake@neicon.ru

Доктор медицинских наук, заместитель  главного врача по медицинской части

С. С. Неняйкин

Самарский государственный медицинский университет МЗ РФ

Email: fake@neicon.ru

Заведующий отделением инфекционной безопасности и гигиены Клиник 

Список литературы

  1. Бердников, Р.Б., Гринберг Л.М., Евсеев А.Ю. Летальный случай генерализованного микобактериоза у больного с терминальной стадией ВИЧ-инфекции // Туберкулез и болезни легких. 2016. Т. 94, № 4. С. 57–62. [Berdnikov R.B., Grinberg L.M., Evseev A.Yu. The lethal case of generalized mycobacteriosis in the patient at the terminal stage of HIV-infection. Tuberkulez i bolezni legkikh = Tuberculosis and Lung Disease, 2016, no. 4, pp. 47–62. doi: 10.21292/2075-1230-2016-94-4-57-64 (In Russ.)]
  2. Майская, М.Ю., Оттен Т.Ф., Ариэль Б.М. Формы легочного и генерализованного микобактериоза при ВИЧ-инфекции в морфологическом освещении // Туберкулез и социально-значимые заболевания. 2014. № 1–2. С. 21–25. [Maiskaya M.Yu., Otten T.F., Ariel B.M. Pulmonary and generalized forms of mycobacteriosis in HIV infection in the morphological aspect. Tuberkulez i sotsial’no-znachimye zabolevaniya = Tuberculosis and Socially Significant Diseases, 2014, no. 1–2, pp. 21–25 (In Russ.)]
  3. Михайловский, А.М., Чуркин С.А., Пашкова Н.А., Лепеха Л.Н. Первый случай посмертной диагностики генерализованного нетуберкулезного микобактериоза у больной на поздней стадии ВИЧ-инфекции в Оренбургской области // Вестник современной клинической медицины. 2016. Т. 9, № 5. С. 88–93. [Mihajlovskij A.M., Churkin S.A., Pashkova N.A., Lepeha L.N. The first case of post-mortem diagnosis of generalized non-tuberculosis mycobacteriosis in a patient with advanced HIV infection in the Orenburg region. Vestnik sovremennoi klinicheskoi meditsiny = Herald of Modern Clinical Medicine, 2016, no. 5, pp. 88–93. doi: 10.20969/VSKM.2016.9(5).88-93 (In Russ.)]
  4. Оттен Т.Ф., Фоменкова Н.В., Майская М.Ю. Генерализованный микобактериоз у пациента с ВИЧ-инфекцией на стадии СПИДа // Туберкулез и болезни легких. 2015. № 8. С. 57–62. [Otten T.F., Fomenkova N.V., Majskaja M.Ju. Generalised mycobacteriosis in a patient with HIV infection with AIDS. Tuberkulez i bolezni legkikh = Tuberculosis and Lung Disease, 2015, no. 8, pp. 57–62 (In Russ.)]
  5. Чучалин А.Г. Респираторная медицина. Москва: ГЭОТАР-Медиа, 2007. Т. 1. 800 c. [Chuchalin A.G. Respiratornaya meditsina [Respiratory medicine]. Moscow: GEOTAR-Media, 2007, vol. 1, 800 p.
  6. Daley C.L., Griffith D.E. Pulmonary non-tuberculous mycobacterial infections. Int. J. Tuberc. Lung. Dis., 2010, vol. 14, no. 6, pp. 665–671. doi: 10.4046/trd.2014.77.1.1
  7. Jorgensen J.H., Carroll K.C., Funke G., Landry M.L., Richter S.S., Warnock D.W. Manual of Clinical Microbiology, 11th ed., vol. 1, pp. 536–570. doi: 10.1128/9781555817381
  8. Hall L., Doerr K.A., Wohlfiel S.L., Roberts G.D. Evaluation of the MicroSeq system for identification of mycobacteria by 16S ribosomal DNA sequencing and its integration into a routine clinical mycobacteriology laboratory. J. Clin. Microbiol., 2003. no. 41, pp. 1447–1453.
  9. Lee A.S., Jelfs P., Sintchenko V., Gilbert G.L. Identification of non-tuberculous mycobacteria: utility of the GenoType Mycobacterium CM/AS assay compared with HPLC and 16S rRNA gene sequencing. J. Med Microbiol., 2009, no. 58, pp. 900 – 904. doi: 10.1099/jmm.0.007484-0
  10. Springer B., Stockman L., Tescher K., Roberts G.D., Böttger E.C. Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic method. J. Clin. Microbiol., 1996, no. 34, pp. 296–303.
  11. Tortoli E. Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990’s. J. Clin. Microbiol. Rev., 2003, no. 2, pp. 319–354. doi: 10.1128/CMR.16.2.319-354.2003

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Лямин А.В., Исматуллин Д.Д., Жестков А.В., Ковалев А.М., Барышникова Л.А., Неняйкин С.С., 2017

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».