A comparative analysis of miRNA expression in human lung epithelial cells during infection with influenza virus and RNAse treatment
- 作者: Baichurina I.A.1, Markelova M.I.1, Shah Mahmud R.1
-
隶属关系:
- Kazan (Volga Region) Federal University
- 期: 卷 12, 编号 2 (2022)
- 页面: 263-270
- 栏目: ORIGINAL ARTICLES
- URL: https://journal-vniispk.ru/2220-7619/article/view/119043
- DOI: https://doi.org/10.15789/2220-7619-ACA-1454
- ID: 119043
如何引用文章
全文:
详细
The influenza virus is capable of causing an acute respiratory infection that affects 5 to 20% of the human population annually. The spread of the influenza virus epidemic occurs within a short period of time due to its high contagiousness. In addition, the annual circulation of the virus among livestock and waterfowl increases for new strains a risk of zoonotic transmission to human populations with unestablished yet immunity. In addition, several high virulence pandemic strains have emerged in the past, and the threat of a new pandemic strain is constantly present. The identification of the physiological and molecular aspects related to influenza A can help developing therapeutic approaches to lower side effects associated with the disease caused by this virus. The RNA profile in human cells changes after exposure to influenza virus. Currently, scientists have been increasingly paying attention to study of microRNAs capable of regulating gene expression. Thus, microRNAs may play a critical role in a wide range of biological processes and have been previously shown to be important effectors in multilayered host-pathogen interplay. The study of the quantitative and qualitative miRNA composition is an important tool for diagnosing and treating various diseases at an early stage. The aim of this work is to analyze the microRNA profile for investigating an effect of influenza A (H1N1) virus on human lung epithelial adenocarcinoma cells. The microRNA fraction was isolated by using phenol-chloroform extraction and analyzed with high-throughput sequencing on the SOLiD 550xl wildfire platform using bioinformatic methods. The study examined 129 mature microRNAs from uninfected cells treated with Bacillus pumilus RNAse as well as cells infected with the influenza A (H1N1) virus. It was found that uninfected cells treated with RNase contained 2-fold more different microRNAs that can participate in suppressing carcinogenesis. The peak expression in influenza virus-infected cells is observed for miR-6884-5p. For cells treated with RNase, the peak expression is observed for miR-3923 that was higher by 400-fold than in cells infected with the influenza virus. We hypothesize that intact viruses or their intracellular components are able to alter cellular metabolism by skewing it to decreased resistance to carcinogenesis processes.
作者简介
Irina Baichurina
Kazan (Volga Region) Federal University
Email: letovaira1995@mail.ru
ORCID iD: 0000-0002-2608-8325
https://kpfu.ru/main?p_id=40904
Junior Researcher, Institute of Fundamental Medicine and Biology
俄罗斯联邦, 420008, Kazan, Kremlevskaya str., 18M. Markelova
Kazan (Volga Region) Federal University
Email: mimarkelova@gmail.com
ORCID iD: 0000-0001-7445-2091
PhD Student, Researcher, Institute of Fundamental Medicine and Biology
俄罗斯联邦, 420008, Kazan, Kremlevskaya str., 18R. Shah Mahmud
Kazan (Volga Region) Federal University
编辑信件的主要联系方式.
Email: raihan.shah@kpfu.ru
ORCID iD: 0000-0002-6543-688X
PhD (Biology), Associate Professor, Senior Researcher, Institute of Fundamental Medicine and Biology
俄罗斯联邦, 420008, Kazan, Kremlevskaya str., 18参考
- Летова И.А., Мадумаров С.А., Сысоева М.А., Шах Махмуд Р.З. Ускоренный и эффективный метод выделения микроРНК из плазмы крови человека // Известия вузов. Прикладная химия и биотехнология. 2019. Т. 9, № 1. C. 53–59. [Letova I.A., Madumarov S.A., Sysoyeva M.A., Shah Mahmud R.Z. Accelerated and efficient method for isolating microRNA from human blood plasma. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology, 2019, vol. 9, no. 1, pp. 53–59. (In Russ.)] doi: 10.21285/2227-2925-2019-9-1-53-59
- Макарова Ю.А., Крамеров Д.А. Некодирующие РНК // Биохимия. 2007. Т. 72, № 11. C. 1427–1448. [Makarova Yu.A., Kramerov D.A. Non-coding RNA. Biokhimiya = Biochemistry, 2007, vol. 72, no. 11, pp. 1427–1448. (In Russ.)]
- Anders S., Huber W. Differential expression of RNA-Seq data at the gene level — the DESeq package. Heidelberg: European Molecular Biology Laboratory (EMBL), 2012, p. 24.
- Boudouresque F., Siret C., Dobric A., Silvy F., Soubeyran P., Iovanna J., Lombardo D., Berthois Y. Ribonuclease MCPiP1 contributes to the loss of micro-RNA-200 family members in pancreatic cancer cells. Oncotarget, 2018, vol. 9, no. 89, pp. 35941–35961. doi: 10.18632/oncotarget.26310
- Carr S.B., Adderson E.E., Hakim H., Xiong X.P., Yan X.W., Caniza M. Clinical and demographic characteristics of seasonal influenza in pediatric patients with cancer. Pediatr. Infect. Dis. J., 2012, vol. 31, no. 11, pp. 202–207. doi: 10.1097/INF.0b013e318267f7d9
- Chen C.J., Heard E. Small RNAs derived from structural non-coding RNAs. Methods, 2013, vol. 63, no. 1, pp. 76–84. doi: 10.1016/ j.ymeth.2013.05.001
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal. Biochem., 1987, vol. 162, no. 1, pp. 156–159. doi: 10.1016/0003-2697(87)90021- 2
- Correia C.N., Nalpas N.C., McLoughlin K.E., Browne J.A., Gordon S.V., MacHugh D.E., Shaughnessy R.G. Circulating microRNAs as potential biomarkers of infectious diseases. Front. Immunol., 2017, vol. 8: 118. doi: 10.3389/fimmu.2017.00118
- Iheagwara U.K., Beatty P.L., Van P.T., Ross T.M., Minden J.S., Finn O.J. Influenza virus infection elicits protective antibodies and T cells specific for host cell antigens also expressed as tumor associated antigens: a new view of cancer immunosurveillance. Cancer Immunol. Res., 2014, vol. 2, no. 3, pp. 263–273. doi: 10.1158/2326-6066.CIR-13- 0125
- Ilinskaya O.N., Singh I., Dudkina E., Ulyanova V., Kayumov A., Barreto G. Direct inhibition of oncogenic KRAS by Bacillus pumilus ribonuclease (binase). Biochim. Biophys. Acta, 2016, vol. 1863, pp. 1559–1567. doi: 10.1016/j.bbamcr.2016.04.005
- Jadideslam G., Ansarin K., Sakhinia E., Babaloo Z., Abhari A., Ghahremanzadeh K., Khalili M., Radmehr R., Kabbazi A. Diagnostic biomarker and therapeutic target applications of miR-326 in cancers: a systematic review. J. Cell. Physiol., 2019, vol. 234, no. 12, pp. 21560–21574. doi: 10.1002/jcp.28782
- Kotecha R.S., Wadia U.D., Jacoby P., Ryan A.L., Blyth C.C., Keil A.D., Gottardo N.G., Cole C.H., Barr I.G., Richmond P.C. Immunogenicity and clinical effectiveness of the trivalent inactivated influenza vaccine in immunocompromised children undergoing treatment for cancer. Cancer Med., 2016, vol. 5, no. 2, pp. 285–293. doi: 10.1002/cam4.596
- Kozomara A., Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res., 2014. vol. 42, no. D1, pp. 68–73. doi: 10.1093/nar/gkt1181
- Kuznetsova I., Arnold T., Aschacher T., Schwager C., Hegedus B., Garay T., Stukova M., Pisareva M., Pleschka S., Bergmann M., Egorov A. Targeting an oncolytic influenza A virus to tumor tissue by elastase. Mol. Ther. Oncolytics, 2017, vol. 7, pp. 37–44. doi: 10.1016/j.omto.2017.09.002
- Langmead B. Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinform., 2010, vol. 11: 11.7. doi: 10.1002/0471250953.bi1107s32
- Li X., Deng S.J., Zhu S., Jin Y., Cui S.P., Chen J.Y., Xiang C., Li Q.Y., He C., Zhao S.F., Chen H.Y., Niu Y., Liu Y., Deng S.C., Wang C.Y., Zhao G. Hypoxia-induced lncRNA-NUTF2P3-001 contributes to tumorigenesis of pancreatic cancer by derepressing the miR-3923/KRAS pathway. Oncotarget, 2016, vol. 7, pp. 6000–6014. doi: 10.18632/oncotarget.6830
- Liao Y., Smyth G.K., Shi W. Feature counts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, vol. 30, no. 7, pp. 923–930. doi: 10.1093/bioinformatics/btt656
- Lin J., Chen Y. T., Xia J., Yang Q. MiR674 inhibits the neuraminidase-stimulated immune response on dendritic cells via down-regulated Mbnl3. Oncotarget, 2016, vol. 7, no. 31, pp. 48978–48994. doi: 10.18632/oncotarget.9832
- Makeeva A., Rodriguez-Montesinos J., Zelenikhin P., Nesmelov A., Preissner K.T., Cabrera-Fuentes H.A., Ilinskaya O.N. Antitumor macrophage response to Bacillus pumilus ribonuclease (binase). Mediators Inflamm., 2017, vol. 2017: 4029641. doi: 10.1155/2017/4029641
- Monteleone N.J., Lutz C.S. miR-708-5p: a microRNA with emerging roles in cancer. Oncotarget, 2017, vol. 8, no. 41, pp. 71292–71316. doi: 10.18632/oncotarget.19772
- Ortiz-Quintero B. Cell-free microRNAs in blood and other body fluids, as cancer biomarkers. Cell Proliferation, 2016, vol. 49, no. 3, pp. 281–303. doi: 10.1111/cpr.12262
- Rivera A., Barr T., Rais M., Engelmann F., Messaoudi I. MicroRNAs regulate host immune response and pathogenesis during influenza infection in rhesus macaques. Viral Immunol., 2016, vol. 29, no. 4, pp. 212–217. doi: 10.1089/vim.2015.0074
- Romano G., Veneziano D., Acunzo M., Croce C.M. Small non-coding RNA and cancer. Carcinogenesis, 2017, vol. 38, no. 5, pp. 485–491. doi: 10.1093/carcin/bgx026
- Russell S.J., Peng K.W. Viruses as anticancer drugs. Trends Pharmacol. Sci., 2007, vol. 28, no. 7, pp. 326–333. doi: 10.1016/ j.tips.2007.05.005
- Shah Mahmud R., Mostafa A., Müller C., Kanrai P., Ulyanova V., Sokurenko Y., Dzieciolowski J., Kuznetsova I., Ilinskaya O., Pleschka S. Bacterial ribonuclease binase exerts an intra-cellular anti-viral mode of action targeting viral RNAs in influenza a virus infected MDCK-II cells. Virol. J., 2018, vol. 15, no. 1: 5. doi: 10.1186/s12985-017-0915-1
- Tasian S.K., Park J.R., Martin E.T., Englund J.A. Influenza-associated morbidity in children with cancer. Pediatr. Blood Cancer, 2008, vol. 50, no. 5, pp. 983–987. doi: 10.1002/pbc.21472
- Ulyanova V., Shah Mahmud R., Dudkina E., Vershinina V., Domann E., Ilinskaya O. Phylogenetic distribution of extracellular guanyl-preferring ribonucleases renews taxonomic status of two Bacillus strains. J. Gen. Appl. Microbiol., 2016, vol. 62, no. 4, pp.181–188. doi: 10.2323/jgam.2016.02.005
- Vert A., Castro J., Ribó M., Benito A., Vilanova M. A nuclear-directed human pancreatic ribonuclease (PE5) targets the metabolic phenotype of cancer cells. Oncotarget, 2016, vol. 7, no. 14, pp. 18309–18324. doi: 10.18632/oncotarget.7579
- Wang B., Li J.D., Sun M., Sun L.H., Zhang X.Y. MiRNA Expression in breast cancer varies with lymph node metastasis and other clinicopathologic features. IUBMB life, 2014, vol. 66, no. 5, pp. 371–377. doi: 10.1002/iub.1273
- Wang R., Zhang Y.-Y., Lu J.-S., Xia B.-H., Yang Z.-X., Zh X.-D., Zhou X.-W., Huang P.-T. The highly pathogenic H5N1 influenza A virus down-regulated several cellular MicroRNAs which target viral genome. J. Cell Mol. Medicine, 2017, vol. 21, no. 11, pp. 3076–3086. doi: 10.1111/jcmm.13219
- Yanagawa-Matsuda A., Mikawa Y., Habiba U., Kitamura T., Yasuda M., Towfik-Alam M., Kitagawa Y., Minowa K., Shindoh M., Higashino F. Oncolytic potential of an E4-deficient adenovirus that can recognize the stabilization of AU-rich element containing mRNA in cancer cells. Oncol. Rep., 2019, vol. 41, no. 2, pp. 954–960. doi: 10.3892/or.2018.6865
补充文件
