Genomic analysis of Klebsiella pneumoniae strains virulence and antibiotic resistance

封面

如何引用文章

全文:

详细

Recently, Klebsiella pneumoniae strains have become widespread both in community-acquired infectious processes and in nosocomial infections. There are two pathotypes of K. pneumoniae: classical (cKp) and hypervirulent (hvKp). Representatives of any pathotype are prone to acquire and further transmit genetic factors of antibiotic resistance and virulence. This combination accounts for severity of the infectious process. Therefore, information about whether the strain belongs to either pathotype can help in prescribing proper therapy. Since there is no consensus upon hypervirulence marker, we attempted to find the most significant combinations of genetic markers of virulence and antibiotic resistance in K. pneumoniae strains. The study was aimed to conduct a genomic analysis of virulence and antibiotic resistance of K. pneumoniae clinical isolates. Materials and methods. There were examined 85 strains of K. pneumoniae isolated from diverse clinical material samples from patients in large St. Petersburg hospitals. In our work, we used classical bacteriological methods, including determination of the hypermucoviscous type using the “string test”, the mass spectrometric method (MALDI-ToF MS) for identifying bacteria, molecular methods for studying markers of virulence and antibiotic resistance (multilocus sequence typing, genome sequencing of K. pneumoniae strains). Results. Among the studied K. pneumoniae strains, the most common carbapenemase genes were OXA-48 (18.7%) and NDM-1 genes — 17.3% of strains; in 6.7% of strains, NDM-1 and OXA-48 genes were found simultaneously. The percentage of strains with β-lactamase genes CTX-M-15 was 54.7%, OXA-1 — 17.3%, TEM-1D — 13.3%, and in 17.3% of cases the OXA-1 and TEM-1D genes were simultaneously present in bacterial strains. Quinolone resistance genes were found in 68.4% of strains. The most common genes were qnrS1 (40% of strains) and qnrB1 (22.7%). Phenotypic antimicrobial susceptibility testing showed that 23.5% and 64.7% strains were resistant to colistin and carbapenems, respectively. 32.9% K. pneumoniae strains, isolated in patients with phlegmon, pneumonia, sepsis, and peritonitis, had a hypermucoid phenotype. The most common sequence types were: ST395 (24.3%), ST23 (17.6%) and ST512 (9.5%). 8% and 25.3% of strains belonged to capsule types K1 and K2, respectively. The polyketide synthesis locus ybt, which characterizes virulent strains, was detected in 69.3% isolates, and the clb locus was present in 10.7% of strains. In 73.3% and 14.7% strains, the plasmid-associated virulence loci iuc and iro were identified, which encode the biosynthesis of the siderophores aerobactin and salmochelin. We described 44 cases (58.7% of strains) of genotypic convergence of virulence and antibiotic resistance, as shown by simultaneously detected the aerobactin (iuc) locus and β-lactamase or carbapenemase genes. Thus, identification of hypervirulence may provide valuable information for the clinical management of patients with hvKp infections. Therefore, it is is obviously necessary to develop comprehensive diagnostic test for simultaneous screening of multidrug-resistant hypervirulent K. pneumoniae strains.

作者简介

A. Samoilova

St. Petersburg Pasteur Institute

编辑信件的主要联系方式.
Email: samoilova@pasteurorg.ru

Junior Researcher, Laboratory of Biological Products

俄罗斯联邦, St. Petersburg

L. Kraeva

St. Petersburg Pasteur Institute; Military Medical Academy named after S.M. Kirov

Email: samoilova@pasteurorg.ru

DSc (Medicine), Head of the Laboratory of Medical Bacteriology; Professor of the Department of Microbiology

俄罗斯联邦, St. Petersburg; St. Petersburg

N. Mikhailov

St. Petersburg Pasteur Institute; V.A. Almazov National Medical Research Centre

Email: samoilova@pasteurorg.ru

PhD (Medicine), Senior Researcher, Laboratory of Biological Products; Associate Professor, Department of Microbiology and Virology, Institute of Medical Education

俄罗斯联邦, St. Petersburg; St. Petersburg

A. Saitova

St. Petersburg Pasteur Institute

Email: samoilova@pasteurorg.ru

Laboratory Assistant-Researcher, Metagenomic Research Group

俄罗斯联邦, St. Petersburg

D. Polev

St. Petersburg Pasteur Institute

Email: samoilova@pasteurorg.ru

PhD (Biology), Senior Researcher, Head of the Metagenomic Research Group

俄罗斯联邦, St. Petersburg

M. Vashukova

Clinical Infectious Diseases Hospital named after S.P. Botkin, Ministry of Health of the Russian Federation

Email: samoilova@pasteurorg.ru

PhD (Medicine), Deputy Chief Physician for Medical Care Development

俄罗斯联邦, St. Petersburg

S. Gordeeva

Clinical Infectious Diseases Hospital named after S.P. Botkin, Ministry of Health of the Russian Federation

Email: samoilova@pasteurorg.ru

Bacteriologist, Head of the Centralized Bacteriological Laboratory

俄罗斯联邦, St. Petersburg

E. Smirnova

Hygiene and Epidemiology Centre in St. Petersburg of Rospotrebnadzor

Email: samoilova@pasteurorg.ru

Bacteriologist, Head of the Bacteriological Laboratory

俄罗斯联邦, St. Petersburg

L. Beljatich

St. Petersburg State Hospital No. 14, Ministry of Health of the Russian Federation

Email: samoilova@pasteurorg.ru

Bacteriologist, Head of the Bacteriological Laboratory

俄罗斯联邦, St. Petersburg

A. Dolgova

St. Petersburg Pasteur Institute

Email: samoilova@pasteurorg.ru

PhD (Biology), Head of the Laboratory of Molecular Genetics of Pathogenic Microorganisms

俄罗斯联邦, St. Petersburg

A. Shabalina

St. Petersburg Pasteur Institute

Email: samoilova@pasteurorg.ru

Junior Researcher, Laboratory of Molecular Genetics of Pathogenic Microorganisms

俄罗斯联邦, St. Petersburg

参考

  1. Агеевец В.A., Агеевец И.В., Сидоренко С.В. Конвергенция множественной резистентности и гипервирулентности у Klebsiella pneumoniae // Инфекция и иммунитет. 2022. Т. 12, № 3. C. 450–460. [Ageevets V.A., Ageevets I.V., Sidorenko S.V. Convergence of multiple resistance and hypervirulence in Klebsiella pneumoniae. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 3, pp. 450–460. (In Russ.)] doi: 10.15789/2220-7619-COM-1825
  2. Баранцевич Е.П., Баранцевич Н.Е., Шляхто Е.В. Продукция карбапенемаз нозокомиальными штаммами K. pneumoniae в Санкт-Петербурге // Клиническая микробиология и антимикробная химиотерапия. 2016. Т. 18, № 3. С. 196–200. [Barantsevich E.P., Barantsevich N.E., Shlyakhto E.V. Production of Carbapenemases in Klebsiella pneumoniae Isolated in Saint-Petersburg. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy, 2016, vol. 18, no. 3, pp. 196–200. (In Russ.)]
  3. Комисарова Е.В., Воложанцев Н.В. Гипервирулентная Klebsiella pneumoniae – новая инфекционная угроза // Инфекционные болезни. 2019. Т. 17, № 3. С. 81–89. [Komisarova E.V., Volozhantsev N.V. Hypervirulent Klebsiella pneumonia: a new infectious threat. Infektsionnye bolezni = Infectious Diseases, 2019, vol. 17, no. 3, pp. 81–89. (In Russ.)] doi: 10.20953/1729-9225-2019-3-81-89
  4. Малыгин А.С., Андреев С.С., Царенко С.В., Петрушин М.А. Антибиотикорезистентность изолятов Klebsiella pneumoniae, выделенных из крови больных COVID-19 // Медицина. 2021. Т. 9, № 2. С. 63–74. [Malygin A.S., Andreev S.S., Tsarenko S.V., Petrushin M.A. Antibiotic resistance of Klebsiella pneumoniae strains isolated from the blood of patients with COVID-19. Meditsina = Medicine, 2021, vol. 9, no. 2, pp. 63–74. (In Russ.)] doi: 10.29234/2308-9113-2021-9-2-63-74
  5. Чеботарь И.В., Бочарова Ю.А., Подопригора И.В., Шагин Д.А. Почему Klebsiella pneumoniae становится лидирующим оппортунистическим патогеном // Клиническая микробиология и антимикробная химиотерапия. 2020. Т. 22, № 1. С. 4–19. Chebotar I.V., Bocharova Yu.A., Podoprigora I.V., Shagin D.A. The reasons why Klebsiella pneumoniae becomes a leading opportunistic pathogen. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy, 2020, vol. 22, no. 1, pp. 4–19. (In Russ.) doi: 10.36488/cmac.2020.1.4-19
  6. Bodena D., Teklemariam Z., Balakrishnan S., Tesfa T. Bacterial contamination of mobile phones of health professionals in Eastern Ethiopia: antimicrobial susceptibility and associated factors. Trop. Med. Health, 2019, vol. 47, no. 15: 47. doi: 10.1186/s41182-019-0144-y
  7. Bulger J., MacDonald U., Olson R., Beanan J., Russo T.A. Metabolite transporter PEG344 is required for full virulence of hypervirulent Klebsiella pneumoniae strain hvKP1 after pulmonary but not subcutaneous challenge. Infect. Immun., 2017, vol. 85, no. 10, e00093-17. doi: 10.1128/IAI.00093-17
  8. Catalan-Najera J.C., Garza-Ramos U., Barrios-Camacho H. Hypervirulence and hypermucoviscosity: two different but complementary Klebsiella spp. phenotypes. Virulence, 2017, vol. 8, no. 7, pp. 1111–1123. doi: 10.1080/21505594.2017.1317412
  9. Chang C.M., Ko W.C., Lee H.C., Chen Y.M., Chuang Y.C. Klebsiella pneumoniae psoas abscess: predominance in diabetic patients and grave prognosis in gas-forming cases. J. Microbiol. Immunol. Infect., 2001, vol. 34, no. 3, pp. 201–206.
  10. Chaudhary P., Bhandari D., Thapa K., Thapa P., Shrestha D., Chaudhary H.K., Shrestha A., Parajuli H., Gupta, B.P. Prevalence of extended spectrum beta-lactamase producing Klebsiella pneumoniae isolated from urinary tract infected patients. Journal of Nepal Health Research Council, 2016, vol. 14, no. 33, pp. 111–115.
  11. Choby J.E., Howard-Anderson J., Weiss D.S. Hypervirulent Klebsiella pneumoniae — clinical and molecular perspectives. J. Intern. Med., 2020, vol. 287, no. 3, pp. 283–300. doi: 10.1111/joim.13007
  12. Compain F., Babosan A., Brisse S., Genel N., Audo J., Ailloud F., Kassis-Chikhani N., Arlet G., Decré D., Doern G.V. Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J. Clin. Microbiol., 2014, vol. 52, no. 12, pp. 4377–4380. doi: 10.1128/JCM.02316-14
  13. Diancourt L., Passet V., Verhoef J., Grimont P.A., Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol., 2005, vol. 43, no. 8, pp. 4178–4182. doi: 10.1128/JCM.43.8.4178-4182.2005
  14. European Centre for Disease Prevention and Control. Emergence of hypervirulent Klebsiella pneumoniae ST23 carrying carbapenemase genes in EU/EEA countries. 17 March 2021. ECDC: Stockholm; 2021.
  15. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters (2023). URL: http://www.eucast.org/clinical_breakpoints (11.02.2023)
  16. Fierer J., Walls L., Chu P. Recurring Klebsiella pneumoniae pyogenic liver abscesses in a resident of San Diego, California, due to a K1 strain carrying the virulence plasmid. J. Clin. Microbiol., 2011, vol. 49, no. 12, pp. 4371– 4373. doi: 10.1128/JCM.05658-11
  17. Gurevich A., Saveliev V., Vyahhi N., Tesler G., QUAST: quality assessment tool for genome assemblies. Bioinformatics, 2013, vol. 29, no. 8, pp. 1072–1075. doi: 10.1093/bioinformatics/btt086
  18. Harada S., Tateda K., Mitsui H., Hattori Y., Okubo M., Kimura S., Sekigawa K., Kobayashi K., Hashimoto N., Itoyama S., Nakai T., Suzuki T., Ishii Y., Yamaguchi K. Familial spread of a virulent clone of Klebsiella pneumoniae causing primary liver abscess. J. Clin. Microbiol., 2011, vol. 49, no. 6, pp. 2354–2356. doi: 10.1128/JCM.00034-11
  19. Hetland M.A.K., Hawkey J., Bernhoff E., Bakksjø R.J., Kaspersen H., Rettedal S.I., Sundsfjord A., Holt K.E., Löhr I.H. Within-patient and global evolutionary dynamics of Klebsiella pneumoniae ST17. bioRxiv, 2022, vol. 11, no. 1: 514664. doi: 10.1101/2022.11.01.514664
  20. Huang T.S., Lee S.S.J., Lee C.C., Chang F.C. Detection of carbapenem-resistant Klebsiella pneumoniae on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using supervised machine learning approach. PLoS One, 2020, vol. 15, no. 2, e0228459. doi: 10.1371/journal.pone.0228459
  21. Lam M.M.C., Wick R.R., Judd L.M., Holt K.E., Wyres K.L. Kaptive 2.0: updated capsule and lipopolysaccharide locus typing for the Klebsiella pneumoniae species complex. Microbial Genomics, 2022, vol. 8, no. 3: 000800. doi: 10.1099/mgen.0.000800
  22. Lam M.M.C., Wick R.R., Wyres K.L., Gorrie C.L., Judd L.M., Jenney A.W.J., Brisse S., Holt K.E. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb. Genom., 2018, vol. 4, no. 9: e000196. doi: 10.1099/mgen.0.000196
  23. Lam M.M.C., Wyres K.L., Wick R.R., Judd L.M., Fostervold A., Holt K.E., Lohr I.H. Convergence of virulence and MDR in a single plasmid vector in MDR Klebsiella pneumoniae ST15. J. Antimicrob. Chemother., 2019, vol. 74, no. 5, pp. 1218–1222. doi: 10.1093/jac/dkz028
  24. Lam M.M.C., Wyres K.L., Judd L.M., Wick R.R., Jenney A., Brisse S., Holt K.E. Tracking key virulence loci encoding aerobactin and salmochelin siderophore synthesis in Klebsiella pneumoniae. Genome Med., 2018, vol. 10, no. 1: 77 doi: 10.1186/s13073-018-0587-5
  25. Liu Y.C., Cheng D.L., Lin C.L. Klebsiella pneumoniae liver abscess associated with septic endophthalmitis. Arch. Intern. Med., 1986, vol. 146, no. 10, pp. 1913–1916. doi: 10.1001/archinte.1986.00360220057011
  26. Luo Y., Wang Y., Ye L., Yang J. Molecular epidemiology and virulence factors of pyogenic liver abscess causing Klebsiella pneumoniae in China. Clin. Microbiol. Infect., 2014, vol. 20, no. 11: O818-24. doi: 10.1111/1469-0691.12664
  27. Navon-Venezia S., Kondratyeva K., Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev., 2017, vol. 41, no. 3, pp. 252–275. doi: 10.1093/femsre/fux013
  28. Paczosa M.K., Mecsas J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol. Mol. Biol. Rev., 2016, vol. 80, no. 3, pp. 629–661. doi: 10.1128/MMBR.00078-15
  29. Parrott A.M., Shi J., Aaron J., Green D.A., Whittier S., Wu F. Detection of multiple hypervirulent Klebsiella pneumoniae strains in a New York City hospital through screening of virulence genes. Clin. Microbiol. Infect., 2021, vol. 27, no. 4, pp. 583–589. doi: 10.1016/j.cmi.2020.05.012
  30. Patel P.K., Russo T.A., Karchmer A.W. Brief report on hypervirulent Klebsiella pneumoniae. Open Forum Infect. Dis., 2014, vol. 1, no. 1, ofu028. doi: 10.1093/ofid/ofu028
  31. Pomakova D.K., Hsiao C.B., Beanan J.M., Olson R., Macdonald U., Keynan Y., Russo T.A. Clinical and phenotypic differences between classic and hypervirulent Klebsiella pneumoniae: an emerging and under-recognized pathogenic variant. Eur. J. Clin. Microbiol. Infect. Dis., 2012, vol. 31, no. 6, pp. 981–989 doi: 10.1007/s10096-011-1396-6
  32. Popa L.I., Gheorghe I., Barbu I.C., Surleac M., Paraschiv S., Măruţescu L., Popa M., Pîrcălăbioru G.G., Talapan D., Niţă M., Streinu-Cercel A., Streinu-Cercel A., Oţelea D., Chifiriuc M.C. Multidrug Resistant Klebsiella pneumoniae ST101 Clone Survival Chain From Inpatients to Hospital Effluent After Chlorine Treatment. Front. Microbiol., 2021, vol. 11, 610296. doi: 10.3389/fmicb.2020.610296
  33. Prjibelski A., Antipov D., Meleshko D., Lapidus A., Korobeynikov A. Using SPAdes de novo assembler. Curr. Protoc. Bioinformatics, 2020, vol. 70: e102. doi: 10.1002/cpbi.102
  34. Redgrave L.S., Sutton S.B., Webber M.A., Piddock L.J. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol., 2014, vol. 22, no. 8, pp. 438–445. doi: 10.1016/j.tim.2014.04.007
  35. Regueiro V., Campos M.A., Pons J., Alberti S., Bengoechea J.A. The uptake of a Klebsiella pneumoniae capsule polysaccharide mutant triggers an inflammatory response by human airway epithelial cells. Microbiology, 2006, vol. 152, no. 2, pp. 555–566. doi: 10.1099/mic.0.28285-0
  36. Russo T.A., Olson R., Fang C.T., Stoesser N., Miller M., MacDonald U., Hutson A., Barker J.H., La Hoz R.M., Johnson J.R. Identification of Biomarkers for Differentiation of Hypervirulent Klebsiella pneumoniae from Classical K. pneumoniae. J. Clin. Microbiol., 2018, vol. 56, no. 9: e00776-18. doi: 10.1128/JCM.00776-18
  37. Shon A.S., Bajwa R.P., Russo T.A. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence, 2013, vol. 4, no. 2, pp. 107–118. doi: 10.4161/viru.22718
  38. Siu L.K., Yeh K.M., Lin J.C., Fung C.P., Chang F.Y. Klebsiella pneumoniae liver abscess: a new invasive syndrome. Lancet Infect. Dis., 2012, vol. 12, no. 11, pp. 881–887. doi: 10.1016/S1473-3099(12)70205-0
  39. Tan Y.M., Chung A.Y., Chow P.K., Cheow P.C., Wong W.K., Ooi L.L., Soo K.C. An appraisal of surgical and percutaneous drainage for pyogenic liver abscesses larger than 5 cm. Ann. Surg., 2005, vol. 241, no. 3, pp. 485–490. doi: 10.1097/01.sla.0000154265.14006.47
  40. Tsay R.W., Siu L.K., Fung C.P., Chang F.Y. Characteristics of bacteremia between community-acquired and nosocomial Klebsiella pneumoniae infection: risk factor for mortality and the impact of capsular serotypes as a herald for communityacquired infection. Arch. Intern. Med., 2002, vol. 162, no. 9, pp. 1021–1027. doi: 10.1001/archinte.162.9.1021
  41. Walker K.A., Miner T.A., Palacios M., Trzilova D., Frederick D.R., Broberg C.A., Sepúlveda V.E., Quinn J.D., Miller V.L. A Klebsiella pneumoniae Regulatory Mutant Has Reduced Capsule Expression but Retains Hypermucoviscosity. mBio, 2019, vol. 10, no. 2: e00089-19. doi: 10.1128/mBio.00089-19
  42. Wang J.H., Liu Y.C., Lee S.S., Yen M.Y., Chen Y.S., Wang J.H., Wann S.R., Lin H.H. Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin. Infect. Dis., 1998, vol. 26, no. 6, pp. 1434 –1438. doi: 10.1086/516369
  43. Wyres K.L., Wick R.R., Gorrie C., Jenney A., Follador R., Thompson N., Holt K.E. Identification of Klebsiella capsule synthesis loci from whole genome data. Microbial Genomics, 2016, vol. 2, no. 12: e000102. doi: 10.1099/mgen.0.000102
  44. Yu W.L., Ko W.C., Cheng K.C., Lee C.C., Lai C.C., Chuang Y.C. Comparison of prevalence of virulence factors for Klebsiella pneumoniae liver abscesses between isolates with capsular K1/K2 and non-K1/K2 serotypes. Diagn. Microbiol. Infect. Dis., 2008, vol. 62, no. 1, pp. 1–6. doi: 10.1016/j.diagmicrobio.2008.04.007

补充文件

附件文件
动作
1. JATS XML

版权所有 © Samoilova A.A., Kraeva L.A., Mikhailov N.V., Saitova A.T., Polev D.E., Vashukova M.A., Gordeeva S.A., Smirnova E.V., Beljatich L.I., 2024

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».