Salusin-α and salusin-β as new biological markers in cardiovascular diseases: literature review

Cover Page

Cite item

Full Text

Abstract

Despite significant advances in medicine, cardiovascular disease continues to be the leading cause of death worldwide. An important task in cardiology is the search and study of new cardiovascular biological markers. In recent years, salusins have attracted the interest of scientists. Salusins are endogenous biologically active peptides, which were first identified in 2003. Thus far, studies have demonstrated that salusin-α and salusin-β play important roles in vascular remodeling, inflammation, hypertension, and atherosclerotic processes. Salusin-α exhibits an antiatherogenic effect, whereas salusin-β plays a proatherogenic role. Despite the diverse biological, physiological, and pathophysiological aspects of salusins, the exact mechanism of their cardiovascular effects is not fully known. Further in-depth studies of the role of salusins in cardiovascular diseases are required. The regulation of the concentration and expression of salusin-α and salusin-β may prove to be a promising strategy for the treatment of patients with cardiac diseases.

About the authors

Amina M. Alieva

Pirogov Russian National Research Medical University

Author for correspondence.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-code: 2749-6427

MD, Cand. Sci. (Med.), associate professor

Russian Federation, Moscow

Elena V. Reznik

Pirogov Russian National Research Medical University

Email: elenaresnik@gmail.com
ORCID iD: 0000-0001-7479-418X
SPIN-code: 3494-9080

MD, Dr. Sci. (Med.), professor

Russian Federation, Moscow

Natalia V. Teplova

Pirogov Russian National Research Medical University

Email: teplova.nv@yandex.ru
ORCID iD: 0000-0002-7181-4680
SPIN-code: 9056-1948

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Malika Kh. Gyzyeva

Pyatigorsk Medical and Pharmaceutical Institute

Email: amisha_alieva@mail.ru
ORCID iD: 0009-0008-9105-1191

student

Russian Federation, Pyatigorsk

Alik M. Rakhaev

Main Bureau of Medical and Social Expertise

Email: alikrahaev@yandex.ru
ORCID iD: 0000-0001-9601-1174
SPIN-code: 5166-8100

MD, Dr Sci. (Med.), Professor

Russian Federation, Nalchik

Irina A. Kotikova

Pirogov Russian National Research Medical University

Email: kotikova.ia@mail.ru
ORCID iD: 0000-0001-5352-8499
SPIN-code: 1423-7300

student

Russian Federation, Moscow

Igor G. Nikitin

Pirogov Russian National Research Medical University

Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881
SPIN-code: 3595-1990

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

References

  1. Zdravookhranenie v Rossii. 2019: Stat. sb. Moscow: Rosstat; 2019. (In Russ).
  2. O sostoyanii sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v Rossiiskoi Federatsii v 2019 godu: Gosudarstvennyi doklad. Moscow: Federal'naya sluzhba po nadzoru v sfere zashchity prav potrebitelei i blagopoluchiya cheloveka; 2020. (In Russ).
  3. Alieva AM. Natriiureticheskie peptidy: ispol'zovanie v sovremennoi kardiologii. Atmosfera. Novosti kardiologii. 2017;1:26–31. (In Russ).
  4. Alieva AM, Pinchuk TV, Voronkova KV, et al. Neopterin is a biomarker of chronic heart failure (review of modern literature). Consilium Medicum. 2021;23(10):756–759. (In Russ). doi: 10.26442/20751753.2021.10.201113
  5. Aliyevа AM, Almazova II, Pinchuk TV, et al. The value of copeptin in the diagnosis and prognosis of cardiovascular diseases. Clinical Medicine (Russian Journal). 2020;98(3):203–209. (In Russ). doi: 10.30629/0023-2149-2020-98-3-203-209
  6. Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: microRNA and heart failure. Therapy. 2022;1:60–70. (In Russ). doi: 10.18565/therapy.2022.1.60-70
  7. Shichiri M, Ishimaru S, Ota T, et al. Salusins: newly identified bioactive peptides with hemodynamic and mitogenic activities. Nat Med. 2003;9(9):1166–1172. doi: 10.1038/nm913
  8. Janecka A, Stefanowicz J. Use of salusin β for predicting atherosclerosis and components of the metabolic syndrome. Adv Clin Exp Med. 2023. doi: 10.17219/acem/166535. Epub ahead of print.
  9. Chen MX, Deng BY, Liu ST, et al. Salusins: advance in cardiovascular disease research. J Pharm Pharmacol. 2023;75(3):363–369. doi: 10.1093/jpp/rgac087
  10. Sato K, Watanabe R, Itoh F, et al. Salusins: potential use as a biomarker for atherosclerotic cardiovascular diseases. Int J Hypertens. 2013;2013:965140. doi: 10.1155/2013/965140
  11. Watanabe T, Sato K, Itoh F, et al. The roles of salusins in atherosclerosis and related cardiovascular diseases. J Am Soc Hypertens. 2011;5(5):359–365. doi: 10.1016/j.jash.2011.06.003
  12. Koya T, Miyazaki T, Watanabe T, et al. Salusin-β accelerates inflammatory responses in vascular endothelial cells via NF-κB signaling in LDL receptor-deficient mice in vivo and HUVECs in vitro. Am J Physiol Heart Circ Physiol. 2012;303(1):H96–H105. doi: 10.1152/ajpheart.00009.2012
  13. Esfahani M, Saidijam M, Goodarzi MT, et al. Salusin-α Attenuates Inflammatory Responses in Vascular Endothelial Cells. Biochemistry (Mosc). 2017;82(11):1314–1323. doi: 10.1134/S0006297917110098
  14. Zhou CH, Liu L, Liu L, et al. Salusin-β not salusin-α promotes vascular inflammation in ApoE-deficient mice via the I-κBα/NF-κB pathway. PLoS One. 2014;9(3):e91468. doi: 10.1371/journal.pone.0091468
  15. Chen H, Jin G. Downregulation of Salusin-β protects renal tubular epithelial cells against high glucose-induced inflammation, oxidative stress, apoptosis and lipid accumulation via suppressing miR-155-5p. Bioengineered. 2021;12(1):6155–6165. doi: 10.1080/21655979.2021
  16. Wang H, Zhang M, Zhou H, et al. Salusin-β Mediates High Glucose-Induced Inflammation and Apoptosis in Retinal Capillary Endothelial Cells via a ROS-Dependent Pathway in Diabetic Retinopathy. Diabetes Metab Syndr Obes. 2021;14:2291–2308. doi: 10.2147/DMSO.S301157
  17. Xu T, Zhang Z, Liu T, et al. Salusin-β contributes to vascular inflammation associated with pulmonary arterial hypertension in rats. J Thorac Cardiovasc Surg. 2016;152(4):1177–1187. doi: 10.1016/j.jtcvs.2016.05.056
  18. Zhou CH, Pan J, Huang H, et al. Salusin-β, but not salusin-α, promotes human umbilical vein endothelial cell inflammation via the p38 MAPK/JNK-NF-κB pathway. PLoS One. 2014;9(9):e107555. doi: 10.1371/journal.pone.0107555
  19. Li HB, Yu XJ, Bai J, et al. Silencing salusin β ameliorates heart failure in aged spontaneously hypertensive rats by ROS-relative MAPK/NF-κB pathways in the paraventricular nucleus. Int J Cardiol. 2019;280:142–151. doi: 10.1016/j.ijcard.2018
  20. Qian K, Feng L, Sun Y, et al. Overexpression of Salusin-α Inhibits Vascular Intimal Hyperplasia in an Atherosclerotic Rabbit Model. Biomed Res Int. 2018;2018:8973986. doi: 10.1155/2018/8973986
  21. Sun HJ, Zhao MX, Liu TY, et al. Salusin-β induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFκB pathway. Sci Rep. 2016;6:23596. doi: 10.1038/srep23596
  22. Sun HJ, Liu TY, Zhang F, et al. Salusin-β contributes to vascular remodeling associated with hypertension via promoting vascular smooth muscle cell proliferation and vascular fibrosis. Biochim Biophys Acta. 2015;1852(9):1709–1718. doi: 10.1016/j.bbadis.2015.05.008
  23. Wang X, Chen A, Hu R, et al. Salusin-β, a TOR2A gene product, promotes proliferation, migration, fibrosis, and calcification of smooth muscle cells and accelerates the imbalance of vasomotor function and vascular remodeling in monocrotaline-induced pulmonary hypertensive rats. Front Pharmacol. 2022;13:928834. doi: 10.3389/fphar.2022.928834
  24. Gao S, Xu L, Zhang Y, et al. Salusin-α Inhibits Proliferation and Migration of Vascular Smooth Muscle Cell via Akt/mTOR Signaling. Cell Physiol Biochem. 2018;50(5):1740–1753. doi: 10.1159/000494792
  25. Pan Y, Sun S, Wang X, et al. Improvement of Vascular Function by Knockdown of Salusin-β in Hypertensive Rats via Nitric Oxide and Reactive Oxygen Species Signaling Pathway. Front Physiol. 2021;12:622954. doi: 10.3389/fphys.2021.622954
  26. Li HB, Qin DN, Cheng K, et al. Central blockade of salusin β attenuates hypertension and hypothalamic inflammation in spontaneously hypertensive rats. Sci Rep. 2015;5:11162. doi: 10.1038/srep11162
  27. Sun S, Zhang F, Pan Y, et al. A TOR2A Gene Product: Salusin-β Contributes to Attenuated Vasodilatation of Spontaneously Hypertensive Rats. Cardiovasc Drugs Ther. 2021;35(1):125–139. doi: 10.1007/s10557-020-06983-1
  28. Ren XS, Ling L, Zhou B, et al. Silencing salusin-β attenuates cardiovascular remodeling and hypertension in spontaneously hypertensive rats. Sci Rep. 2017;7:43259. doi: 10.1038/srep43259
  29. Xu XL, Zeng Y, Zhao C, et al. Salusin-β induces smooth muscle cell proliferation by regulating cyclins D1 and E expression through MAPKs signaling pathways. J Cardiovasc Pharmacol. 2015;65(4):377–385. doi: 10.1097/FJC.0000000000000209
  30. Pan Y, Chen A, Wang X, et al. Saluisn-β contributes to endothelial dysfunction in monocrotaline-induced pulmonary arterial hypertensive rats. Biomed Pharmacother. 2022;155:113748. doi: 10.1016/j.biopha.2022.113748
  31. Xu Y, Fei X, Fu H, et al. Upregulated expression of a TOR2A gene product-salusin-β in the paraventricular nucleus enhances sympathetic activity and cardiac sympathetic afferent reflex in rats with chronic heart failure induced by coronary artery ligation. Acta Physiol (Oxf). 2023;238(4):e13987. doi: 10.1111/apha.13987
  32. Huang X, Wang Y, Ren K. Deleterious effect of salusin-β in paraventricular nucleus on sympathetic activity and blood pressure via NF-κB signaling in a rat model of obesity hypertension. Pharmazie. 2015;70(8):543–548.
  33. Xu Y, Pan Y, Wang X, et al. Knockdown of Salusin-β Improves Cardiovascular Function in Myocardial Infarction-Induced Chronic Heart Failure Rats. Oxid Med Cell Longev. 2021;2021:8896226. doi: 10.1155/2021/8896226
  34. Zhou CH, Liu LL, Wu YQ, et al. Enhanced expression of salusin-β contributes to progression of atherosclerosis in LDL receptor deficient mice. Can J Physiol Pharmacol. 2012;90(4):463–471. doi: 10.1139/y2012-022
  35. Nagashima M, Watanabe T, Shiraishi Y, et al. Chronic infusion of salusin-alpha and -beta exerts opposite effects on atherosclerotic lesion development in apolipoprotein E-deficient mice. Atherosclerosis. 2010;212(1):70–77. doi: 10.1016/j.atherosclerosis.2010.04.027
  36. Sun H, Zhang F, Xu Y, et al. Salusin-β Promotes Vascular Calcification via Nicotinamide Adenine Dinucleotide Phosphate/Reactive Oxygen Species-Mediated Klotho Downregulation. Antioxid Redox Signal. 2019;31(18):1352–1370. doi: 10.1089/ars.2019.7723
  37. Zhang H, Yang C, Wang S, et al. Overexpression of salusin α upregulates AdipoR2 and activates the PPARα/ApoA5/SREBP 1c pathway to inhibit lipid synthesis in HepG2 cells. Int J Mol Med. 2023;51(5):41. doi: 10.3892/ijmm.2023.5244
  38. Zhao MX, Zhou B, Ling L, et al. Salusin-β contributes to oxidative stress and inflammation in diabetic cardiomyopathy. Cell Death Dis. 2017;8(3):e2690. doi: 10.1038/cddis.2017.106
  39. Esfahani M, Saidijam M, Najafi R, et al. The effect of salusin-β on expression of pro- and anti-inflammatory cytokines in human umbilical vein endothelial cells (HUVECs). ARYA Atheroscler. 2018;14(1):1–10. doi: 10.22122/arya.v14i1.1602
  40. Watanabe T, Suguro T, Sato K, et al. Serum salusin-alpha levels are decreased and correlated negatively with carotid atherosclerosis in essential hypertensive patients. Hypertens Res. 2008;31(3):463–468. doi: 10.1291/hypres.31.463
  41. Wang Y, Wang S, Zhang J, et al. Salusin-β is superior to salusin-α as a marker for evaluating coronary atherosclerosis. J Int Med Res. 2020;48(2):300060520903868. doi: 10.1177/0300060520903868
  42. Argun D, Argun F, Borku Uysal B. Evaluation of salusin-α and salusin-β levels in patients with type 2 diabetes mellitus and determination of the impact of severity of hyperglycemia on salusin levels. Ir J Med Sci. 2021;190(4):1403–1411. doi: 10.1007/s11845-021-02674-4
  43. Yılmaz E, Kurt D, Aydın E, et al. A New Marker for Determining Cardiovascular Risk: Salusin Alpha. Cureus. 2022;14(10):e30340. doi: 10.7759/cureus.30340
  44. Liu J, Ren YG, Zhang LH, et al. Serum salusin-β levels are associated with the presence and severity of coronary artery disease. J Investig Med. 2015;63(4):632–635. doi: 10.1097/JIM.0000000000000184
  45. Arkan A, Atukeren P, Ikitimur B, et al. The importance of circulating levels of salusin-α, salusin-β, and heregulin-β1 in atherosclerotic coronary arterial disease. Clin Biochem. 2021;87:19–25. doi: 10.1016/j.clinbiochem.2020.10.003
  46. Yildirim A, Kucukosmanoglu M. Relationship between Serum Salusin Beta Levels and Coronary Artery Ectasia. Acta Cardiol Sin. 2021;37(2):130–137. doi: 10.6515/ACS.202103_37(2).20200910A
  47. Akyüz A, Aydın F, Alpsoy Ş, et al. Relationship of serum salusin beta levels with coronary slow flow. Anatol J Cardiol. 2019;22(4):177–184. doi: 10.14744/AnatolJCardiol.2019.43247
  48. Alpsoy S, Dogan B, Ozkaramanli Gur D, et al. Assessment of salusin alpha and salusin beta levels in patients with newly diagnosed dipper and non-dipper hypertension. Clin Exp Hypertens. 2021;43(1):42–48. doi: 10.1080/10641963.2020.1797086
  49. Fujie S, Hasegawa N, Sanada K, et al. Increased serum salusin-α by aerobic exercise training correlates with improvements in arterial stiffness in middle-aged and older adults. Aging (Albany NY). 2020;12(2):1201–1212. doi: 10.18632/aging.102678
  50. Zhang W, Zhang J, Jin F, Zhou H. Efficacy of felodipine and enalapril in the treatment of essential hypertension with coronary artery disease and the effect on levels of Salusin-β, Apelin, and PON1 gene expression in patients. Cell Mol Biol (Noisy-le-grand). 2022;67(6):174–180. doi: 10.14715/cmb/2021.67.6.24
  51. Genç Elden S, Yılmaz MS, Altındiş M, et al. The role of serum salusin alpha and beta levels and atherosclerotic risk factors in idiopathic sudden hearing loss pathogenesis. Eur Arch Otorhinolaryngol. 2022;279(3):1311–1316. doi: 10.1007/s00405-021-06804-7
  52. Yassien M, Fawzy O, Mahmoud E, Khidr EG. Serum salusin-β in relation to atherosclerosis and ventricular dysfunction in patients with type 2 diabetes mellitus. Diabetes Metab Syndr. 2020;14(6):2057–2062. doi: 10.1016/j.dsx.2020.10.025
  53. Nazari M, Minasian V, Hovsepian S. Effects of Two Types of Moderate- and High-Intensity Interval Training on Serum Salusin-α and Salusin-β Levels and Lipid Profile in Women with Overweight/Obesity. Diabetes Metab Syndr Obes. 2020;13:1385–1390. doi: 10.2147/DMSO.S248476
  54. Sipahi S, Genc AB, Acikgoz SB, et al. Relationship of salusin-alpha and salusin-beta levels with atherosclerosis in patients undergoing haemodialysis. Singapore Med J. 2019;60(4):210–215. doi: 10.11622/smedj.2018123
  55. Močnik M, Marčun Varda N. Current Knowledge of Selected Cardiovascular Biomarkers in Pediatrics: Kidney Injury Molecule-1, Salusin-α and -β, Uromodulin, and Adropin. Children (Basel). 2022;9(1):102. doi: 10.3390/children9010102
  56. Kolakowska U, Kuroczycka-Saniutycz E, Wasilewska A, Olański W. Is the serum level of salusin-β associated with hypertension and atherosclerosis in the pediatric population? Pediatr Nephrol. 2015;30(3):523–531. doi: 10.1007/s00467-014-2960-y
  57. Kolakowska U, Kuroczycka-Saniutycz E, Olanski W, Wasilewska A. Correlation of Salusin Beta with hs-CRP and ADMA in Hypertensive Children and Adolescents. Curr Pharm Des. 2018;24(30):3551–3557. doi: 10.2174/1381612824666180607124531
  58. Dervişoğlu P, Elmas B, Kösecik M, et al. Salusin-α levels are negatively correlated with diastolic blood pressure in children with obesity. Cardiol Young. 2019;29(10):1225–1229. doi: 10.1017/S1047951119001173
  59. Paahoo A, Tadibi V, Behpoor N. Effectiveness of Continuous Aerobic Versus High-Intensity Interval Training on Atherosclerotic and Inflammatory Markers in Boys With Overweight/Obesity. Pediatr Exerc Sci. 2021;33(3):132–138. doi: 10.1123/pes.2020-0138

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effects of salusin-α and salusin-β. Note. ACAT — acyl-CoA cholesterol acyltransferase-1, IL-1β — interleukin-1β, MCP-1 — monocyte chemotactic protein-1, VCAM — cell adhesion molecule, Nox2 — nicotinamide adenine dinucleotide phosphate oxidase 2, ЛПНП — low density lipoproteins.

Download (92KB)
3. Fig. 2. Effects of salusin-β. Note. TNF-α — tumor necrosis factor alpha, ЛПС — lipopolysaccharides, NAD(P)H — nicotinamide adenine dinucleotide phosphate, MAPK — mitogen-activated protein kinase, ERK — extracellular signal-regulated kinases, JNK — C-Jun N-terminal kinase, IL-1β — interleukin-1β, MCP-1 — monocyte chemoattractant protein-1, ACAT — acyl-CoA cholesterol acyltransferase-1, VCAM-1 — cell adhesion molecule-1, NF-κB — nuclear factor kappa B.

Download (202KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».