Asprosin as a novel biological marker of atherosclerosis and carbohydrate metabolism disorders
- Authors: Alieva A.M.1, Baykova I.E.1, Khadzhieva N.K.2, Sultangalieva A.B.1, Rahaev A.M.3, Elmurzaeva D.A.3, Asanov A.O.3, Kovtyukh I.V.1, Etezova E.Z.4, Nikitin I.G.1
-
Affiliations:
- The Russian National Research Medical University named after N.I. Pirogov
- Lav-Med
- Kabardino-Balkarian State University
- Kuban State Medical University
- Issue: Vol 16, No 3 (2025)
- Pages: 250-262
- Section: Reviews
- URL: https://journal-vniispk.ru/2221-7185/article/view/357956
- DOI: https://doi.org/10.17816/CS660866
- EDN: https://elibrary.ru/EKAFDM
- ID: 357956
Cite item
Full Text
Abstract
Cardiovascular diseases represent a major global medical, social, and economic challenge. Active research is being conducted to identify new biological markers and therapeutic targets to develop effective approaches for risk stratification and secondary prevention of cardiovascular diseases. Despite the identification of numerous cardiovascular biomarkers, their translation into clinical practice has largely been unsuccessful. Recently, researchers have increasingly focused on asprosin. The primary objective of this article is to analyze existing studies on the role of asprosin as a biomarker in atherosclerosis and carbohydrate metabolism disorders. An increasing body of experimental evidence indicates that this biomarker contributes to the development and progression of atherosclerosis, diabetes mellitus, obesity, and polycystic ovary syndrome. Asprosin regulates various physiological processes, including appetite stimulation, glucose release, insulin secretion, apoptosis, and inflammation. Based on available clinical data, asprosin appears to be a promising molecule with both diagnostic and prognostic value in the context of atherosclerosis and carbohydrate metabolism disorders. Further research is needed to explore asprosin as an additional laboratory biomarker. Modulation of asprosin concentration and expression may become a promising therapeutic strategy for patients with atherosclerosis and carbohydrate metabolism disorders.
Full Text
##article.viewOnOriginalSite##About the authors
Amina M. Alieva
The Russian National Research Medical University named after N.I. Pirogov
Author for correspondence.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-code: 2749-6427
MD, Cand. Sci. (Medicine), Assistant Professor
Russian Federation, MoscowIrina E. Baykova
The Russian National Research Medical University named after N.I. Pirogov
Email: 1498553@mail.ru
ORCID iD: 0000-0003-0886-6290
SPIN-code: 3054-8884
MD, Cand. Sci. (Medicine), Assistant Professor
Russian Federation, MoscowNyurzhanna Kh. Khadzhieva
Lav-Med
Email: nurzhanna@yandex.ru
ORCID iD: 0000-0002-5520-281X
SPIN-code: 2520-8520
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowAlbina B. Sultangalieva
The Russian National Research Medical University named after N.I. Pirogov
Email: albina_sult_2002@mail.ru
ORCID iD: 0009-0008-4194-8486
SPIN-code: 6613-2479
Russian Federation, Moscow
Alik M. Rahaev
Kabardino-Balkarian State University
Email: alikrahaev@yandex.ru
ORCID iD: 0000-0001-9601-1174
SPIN-code: 5166-8100
MD, Dr. Sci. (Medicine), Professor
Russian Federation, NalchikDzhannet A. Elmurzaeva
Kabardino-Balkarian State University
Email: jannet.elmurzaeva@yandex.ru
ORCID iD: 0000-0002-5640-6638
SPIN-code: 7284-3749
MD, Cand. Sci. (Medicine), Assistant Professor
Russian Federation, NalchikAlim O. Asanov
Kabardino-Balkarian State University
Email: asal2000@mail.ru
ORCID iD: 0009-0000-2507-4530
SPIN-code: 1551-1342
MD, Cand. Sci. (Medicine), Assistant Professor
Russian Federation, NalchikIrina V. Kovtyukh
The Russian National Research Medical University named after N.I. Pirogov
Email: ivkovtuh@mail.ru
ORCID iD: 0000-0002-9176-1889
SPIN-code: 4746-3716
Russian Federation, Moscow
Elina Z. Etezova
Kuban State Medical University
Email: e.etezova@mail.ru
ORCID iD: 0009-0004-0862-582X
SPIN-code: 9089-8680
Russian Federation, Krasnodar
Igor G. Nikitin
The Russian National Research Medical University named after N.I. Pirogov
Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881
SPIN-code: 3595-1990
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowReferences
- Badeinikova KK, Mamedov MN. Early markers of atherosclerosis: predictors of cardiovascular events. Russian Journal of Preventive Medicine. 2023;26(1):103–108. doi: 10.17116/profmed202326011103 EDN: OIBMFG
- Wong ND, Sattar N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat Rev Cardiol. 2023;20(10):685–695. doi: 10.1038/s41569-023-00877-z EDN: MMDOFI
- Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3 — a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53–59. doi: 10.26442/20751753.2022.1.201382 EDN: MTPNUO
- Alieva AM, Reznik EV, Pinchuk TV, et al. Growth Differentiation Factor-15 (GDF-15) is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2023;13(1):14–23. doi: 10.20514/2226-6704-2023-13-1-14-23 EDN: DHDDPP
- Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: miRNA and heart failure. Therapy. 2022;1:60–70. doi: 10.18565/therapy.2022.1.60-70 EDN: FKQBDC
- Lyu JX, Guo DD, Song YC, et al. Circulating Myokines as Novel Biomarkers for Cardiovascular Diseases. Rev Cardiovasc Med. 2024;25(2):56. doi: 10.31083/j.rcm2502056 EDN: WPGJVY
- Markova TN, Mishchenko NK, Petina DV. Adipocytokines: modern definition, classification and physiological role. Problems of Endocrinology. 2022;68(1):73–80. doi: 10.14341/probl12805 EDN: BWJQBG
- Yuan M, Li W, Zhu Y, et al. Asprosin: A Novel Player in Metabolic Diseases. Front Endocrinol (Lausanne). 2020;11:64. doi: 10.3389/fendo.2020.00064 EDN: HGJSGQ
- Farrag M, Ait Eldjoudi D, González-Rodríguez M, et al. Asprosin in health and disease, a new glucose sensor with central and peripheral metabolic effects. Front Endocrinol (Lausanne). 2023;13:1101091. doi: 10.3389/fendo.2022.1101091 EDN: FHLZSK
- Luís C, Fernandes R, Soares R, von Hafe P. A state of the art review on the novel mediator asprosin in the metabolic syndrome. Porto Biomed J. 2020;5(6):e108. doi: 10.1097/j.pbj.0000000000000108
- Romere C, Duerrschmid C, Bournat J, et al. Asprosin, a Fasting-Induced Glucogenic Protein Hormone. Cell. 2016;165(3):566–579. doi: 10.1016/j.cell.2016.02.063
- Mazur-Bialy AI. Asprosin-A Fasting-Induced, Glucogenic, and Orexigenic Adipokine as a New Promising Player. Will It Be a New Factor in the Treatment of Obesity, Diabetes, or Infertility? A Review of the Literature. Nutrients. 2021;13(2):620. doi: 10.3390/nu13020620 EDN: GRQXMH
- Ugur K, Aydin S. Saliva and Blood Asprosin Hormone Concentration Associated with Obesity. Int J Endocrinol. 2019;2019:2521096. doi: 10.1155/2019/2521096
- Morcos YAT, Lütke S, Tenbieg A, et al. Sensitive asprosin detection in clinical samples reveals serum/saliva correlation and indicates cartilage as source for serum asprosin. Sci Rep. 2022;12(1):1340. doi: 10.1038/s41598-022-05060-x
- Ovali MA, Bozgeyik I. Asprosin, a C-Terminal Cleavage Product of Fibrillin 1 Encoded by the FBN1 Gene, in Health and Disease. Mol Syndromol. 2022;13(3):175–183. doi: 10.1159/000520333 EDN: LOLQWH
- Lee T, Yun S, Jeong JH, Jung TW. Asprosin impairs insulin secretion in response to glucose and viability through TLR4/JNK-mediated inflammation. Mol Cell Endocrinol. 2019;486:96–104. doi: 10.1016/j.mce.2019.03.001
- Zhang Z, Tan Y, Zhu L, et al. Asprosin improves the survival of mesenchymal stromal cells in myocardial infarction by inhibiting apoptosis via the activated ERK1/2-SOD2 pathway. Life Sci. 2019;231:116554. doi: 10.1016/j.lfs.2019.116554
- Jung TW, Kim HC, Kim HU, et al. Asprosin attenuates insulin signaling pathway through PKCδ-activated ER stress and inflammation in skeletal muscle. J Cell Physiol. 2019;234(11):20888–20899. doi: 10.1002/jcp.28694
- Zhao Y, Wang Z, Chen Y, et al. Asprosin aggravates atherosclerosis via regulating the phenotype transformation of vascular smooth muscle cells. Int J Biol Macromol. 2024;268(Pt 2):131868. doi: 10.1016/j.ijbiomac.2024.131868 EDN: PMSLMQ
- Xu ZQ, Li XZ, Zhu R, et al. Asprosin contributes to vascular remodeling in hypertensive rats via superoxide signaling. J Hypertens. 2024;42(8):1427–1439. doi: 10.1097/HJH.0000000000003751 EDN: CPZNKX
- Shabir K, Gharanei S, Orton S, et al. Asprosin Exerts Pro-Inflammatory Effects in THP-1 Macrophages Mediated via the Toll-like Receptor 4 (TLR4) Pathway. Int J Mol Sci. 2022;24(1):227. doi: 10.3390/ijms24010227 EDN: XUGLWU
- Ge R, Chen JL, Zheng F, et al. Asprosin promotes vascular inflammation via TLR4-NFκB-mediated NLRP3 inflammasome activation in hypertension. Heliyon. 2024;10(11):e31659. doi: 10.1016/j.heliyon.2024.e31659 EDN: KYCEWQ
- Zheng F, Ye C, Lei JZ, et al. Intervention of Asprosin Attenuates Oxidative Stress and Neointima Formation in Vascular Injury. Antioxid Redox Signal. 2024;41(7-9):488–504. doi: 10.1089/ars.2023.0383 EDN: RHILLK
- Huang Q, Chen S, Xiong X, et al. Asprosin Exacerbates Endothelium Inflammation Induced by Hyperlipidemia Through Activating IKKβ-NF-κBp65 Pathway. Inflammation. 2023;46(2):623–638. doi: 10.1007/s10753-022-01761-7 EDN: QCPVGR
- Moradi N, Fouani FZ, Vatannejad A, et al. Serum levels of Asprosin in patients diagnosed with coronary artery disease (CAD): a case-control study. Lipids Health Dis. 2021;20(1):88. doi: 10.1186/s12944-021-01514-9 EDN: FMPELR
- Güven C, Kafadar H. Evaluation of Plasma Asprosin Concentration in Patients with Coronary Artery Disease. Braz J Cardiovasc Surg. 2022;37(4):493–500. doi: 10.21470/1678-9741-2021-0003 EDN: YVKSIO
- Ciftci H, Gul HF, Sahin L, et al. Serum myeloperoxidase, paraoxonase, and plasma asprosin concentrations in patients with acute myocardial infarction. Heliyon. 2024;10(8):e29465. doi: 10.1016/j.heliyon.2024.e29465 EDN: GQDPRN
- Hussein HK, Aubead NM, Kzar HH, et al. Association of cord blood asprosin concentration with atherogenic lipid profile and anthropometric indices. Diabetol Metab Syndr. 2022;14(1):74. doi: 10.1186/s13098-022-00844-7 EDN: QKDBKW
- Wang R, Hu W. Asprosin promotes β-cell apoptosis by inhibiting the autophagy of β-cell via AMPK-mTOR pathway. J Cell Physiol. 2021;236(1):215–221. doi: 10.1002/jcp.29835 EDN: VAMDTV
- Katar M, Gevrek F. Relation of the intense physical exercise and asprosin concentrations in type 2 diabetic rats. Tissue Cell. 2024;90:102501. doi: 10.1016/j.tice.2024.102501 EDN: FWQZQD
- Mishra I, Duerrschmid C, Ku Z, et al. Asprosin-neutralizing antibodies as a treatment for metabolic syndrome. Elife. 2021;10:e63784. doi: 10.7554/eLife.63784 EDN: YDNGPH
- You M, Liu Y, Wang B, et al. Asprosin induces vascular endothelial-to-mesenchymal transition in diabetic lower extremity peripheral artery disease. Cardiovasc Diabetol. 2022;21(1):25. doi: 10.1186/s12933-022-01457-0 EDN: OBAEXO
- Hong T, Li JY, Wang YD, et al. High Serum Asprosin Levels Are Associated with Presence of Metabolic Syndrome. Int J Endocrinol. 2021;2021:6622129. doi: 10.1155/2021/6622129 EDN: APYZIY
- Naiemian S, Naeemipour M, Zarei M, et al. Serum concentration of asprosin in new-onset type 2 diabetes. Diabetol Metab Syndr. 2020;12:65. doi: 10.1186/s13098-020-00564-w EDN: AYZQCC
- Ma L, Wang Z, Sun L, et al. Association analysis between serum asprosin and metabolic characteristics, Complications in type 2 diabetic patients with different durations. J Diabetes Investig. 2024;15(12):1781–1787. doi: 10.1111/jdi.14313 EDN: CTKQEH
- Deng X, Zhao Z, Zhao L, et al. Association between circulating asprosin levels and carotid atherosclerotic plaque in patients with type 2 diabetes. Clin Biochem. 2022;109–110:44–50. doi: 10.1016/j.clinbiochem.2022.04.018 EDN: DTVATA
- Timurkaan M, Timurkaan ES. Two Important Players for Type 2 Diabetes Mellitus: Metrnl and Asprosin. Clin Lab. 2022;68(9). doi: 10.7754/Clin.Lab.2021.211015 EDN: DIWDTZ
- Yigitdol I, Gulumsek E, Demirtas D, et al. The role of serum asprosin levels in predicting the severity of coronary artery disease in patients with diabetes mellitus. Ir J Med Sci. 2024;193(3):1239–1247. doi: 10.1007/s11845-024-03616-6 EDN: DFKGGZ
- Zhong M, Tian X, Sun Q, et al. Correlation of asprosin and Nrg-4 with type 2 diabetes Mellitus Complicated with Coronary Heart Disease and the Diagnostic Value. BMC Endocr Disord. 2023;23(1):61. doi: 10.1186/s12902-023-01311-8 EDN: LLHHXO
- Senyigit A, Durmus S, Tabak O, et al. The Associations between Asprosine, Clusterin, Zinc Alpha-2-Glycoprotein, Nuclear Factor Kappa B, and Peroxisome Proliferator-Activated Receptor Gamma in the Development of Complications in Type 2 Diabetes Mellitus. J Clin Med. 2024;13(20):6126. doi: 10.3390/jcm13206126 EDN: LPCPXZ
- Goodarzi G, Setayesh L, Fadaei R, et al. Circulating levels of asprosin and its association with insulin resistance and renal function in patients with type 2 diabetes mellitus and diabetic nephropathy. Mol Biol Rep. 2021;48(7):5443–5450. doi: 10.1007/s11033-021-06551-2 EDN: LIWWXO
- Boz İB, Aytürk Salt S, Salt Ö, et al. Association Between Plasma Asprosin Levels and Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes. 2023;16:2515–2521. doi: 10.2147/DMSO.S424651
- Zhong L, Long Y, Wang S, et al. Continuous elevation of plasma asprosin in pregnant women complicated with gestational diabetes mellitus: A nested case-control study. Placenta. 2020;93:17–22. doi: 10.1016/j.placenta.2020.02.004 EDN: XSSPIC
- Hu G, Si W, Zhang Q, Lv F. Circulating asprosin, irisin, and abdominal obesity in Chinese patients with type 2 diabetes mellitus: a case-control study. Endokrynol Pol. 2023;74(1):55–62. doi: 10.5603/EP.a2022.0093 EDN: ZKBQAA
- Gozel N, Kilinc F. Investigation of plasma asprosin and saliva levels in newly diagnosed type 2 diabetes mellitus patients treated with metformin. Endokrynol Pol. 2021;72(1):37–43. doi: 10.5603/EP.a2020.0059 EDN: WLMXVJ
- Talebi SS, Rezaie S, Hajmiri MS, et al. Comparison of the effects of empagliflozin and sitagliptin, as add-on to metformin, on serum levels of asprosin and metabolic parameters in patients with type 2 diabetes mellitus. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(11):9149–9165. doi: 10.1007/s00210-024-03219-z EDN: WDGVHR
- Dai C, Zhu W. Effects of GLP-1 receptor agonists on asprosin levels in normal weight or overweight/obesity patients with type 2 diabetes mellitus. Medicine (Baltimore). 2022;101(43):e31334. doi: 10.1097/MD.0000000000031334 EDN: TEBWOY
- Jiang A, Feng Z, Yuan L, et al. Effect of sodium-glucose co-transporter-2 inhibitors on the levels of serum asprosin in patients with newly diagnosed type 2 diabetes mellitus. Diabetol Metab Syndr. 2021;13(1):34. doi: 10.1186/s13098-021-00652-5 EDN: ZDHEUJ
- Roomi AB, Ali EA, Nori W, Rahmah MI. Asprosin is a Reliable Predictor of Osteoporosis in Type 2 Diabetic Postmenopausal Women: A Case-Control Study. Indian J Clin Biochem. 2025;40(1):97–104. doi: 10.1007/s12291-023-01163-y EDN: DOXLVW
- Li CH, Zhao X, Xu Y, et al. Increased serum asprosin is correlated with diabetes mellitus-induced erectile dysfunction. Diabetol Metab Syndr. 2024;16(1):91. doi: 10.1186/s13098-024-01333-9 EDN: CGIDAW
Supplementary files


