The structure and characteristics of investment decision-making in a hedge fund

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article structured the elements of the process of making investment decisions in a hedge fund for the purposes of formalizing a decision support system (DSS). In particular, the authors systematized risk control methods when making investment decisions within a hedge fund, taking into account portfolio optimization, tasks and conditions for achieving optimality. The authors raise the issue of strategies' mutual correlation, which leads to a potential threat of a decrease in resource provision (in the informational aspect) of a decision maker when working with DSS with a focus on the proposed target value to resolve a problematic situation. To solve this problem, it is proposed to carry out constant monitoring and updating of the accumulated knowledge base by the subject of management (manager) about the management object (investment strategy).It is also necessary to control the flows in the management object on the basis of matching needs and opportunities through logical and linguistic modeling (frames) in order to maintain the system's homeokinetic equilibrium.

About the authors

Natalya Stepanovna Voronova

St Petersburg State University

Email: n.voronova@spbu.ru
Проф., д.э.н., проф.

Elena Anatolevna Yakovleva

Saint Petersburg State University of Economics

Email: helen7199@gmail.com
Проф., д.э.н., доцент

Ermin Emirovich Sharich

St Petersburg State University

Email: st062696@student.spbu.ru
студент

Darya Dmitrievna Yakovleva

St Petersburg State University

Email: st062671@student.spbu.ru
студент

References

  1. Sharpe W.F. The Sharpe ratio // The Journal of Portfolio Management. – 1994. – № 21(1). – p. 49–58.
  2. Fama E. F., French K. R. International tests of a five-factor asset pricing model // Journal of financial Economics. – 2017. – № 123(3). – p. 441-463.
  3. Amel-Zadeh Amir, George Serafeim Why and How Investors Use ESG Information: Evidence from a Global Survey. / Working Paper. - Harvard Business School, 2017. – 87–103 p.
  4. Volkova V.N., Vasiliev A.Y., Efremov A.A., Loginova A.V. Information technologies to support decision-making in the engineering and control // Proceedings of 2017 20th IEEE International Conference on Soft Computing and Measurements: SCM 2017; St. Petersburg; Russian Federation; 24-26 May 2017. 2017. – p. 727-730.
  5. Кукор Б.Л. Адаптивное управление промышленным комплексом региона: теория, методология, практика. / Б.Л. Кукор, Г.А. Клименков; под общ. ред. Б.Л. Кукора. - Екатеринбург; Санкт-Петербург: ФГБУН Институт экономики Уральского отделения РАН, 2017. – 306 c.
  6. Поспелов Д.А. Десять «горячих точек» в исследованиях по искусственному интеллекту // Интеллектуальные системы. – 1996. – № 1-4. – c. 47—56.
  7. Hull J.C. Risk management and financial institutions. - New York: Pearson Education International, 2007. – 576 p.
  8. Jorion P. Value at risk: The new benchmark for managing financial risk. - New York: McGraw-Hill Education, 2007. – 624 p.
  9. Jalota Hemant, Thakur Manoj, Mittal Garima Modelling and constructing membership function for uncertain portfolio parameters: A credibilistic framework // Expert Systems with Applications. – 2016. – № 71(2). – p. 40-56. – doi: 10.1016/j.eswa.2016.11.014.
  10. Fama E.F., French K.R. The cross-section of expected stock returns // Journal of Financial Economics. – 1992. – № 2. – p. 427-465.
  11. Lochof R. Hedge Funds and Hope // The Journal of Portfolio Management. – 2002. – № 28. – p. 92-99.
  12. Bansal Ravi, Kiku Dana, Shaliastovich Ivan, Yaron Amir Volatility, the Macroeconomy and Asset Prices // The Journal of Finance. – 2012. – № 69(6). – doi: 10.1111/jofi.12110.
  13. Yin C., Zhu D. New class of distortion risk measures and their tail asymptotics with emphasis on Va R // Journal of Financial Risk Management. – 2018. – № 07(01). – p. 12–38. – doi: 10.4236/jfrm.2018.71002.
  14. Levy H., Markowitz H.M. Approximating Expected Utility by a Function of Mean and Variance // American Economic Review. – 1979. – № 69(3). – p. 308-317.
  15. Black F., Litterman R. Global Asset Allocation with Equities, Bonds, and Currencies. - Fixed Income Research, Goldman, Sachs Company, 1991. – 40 p.
  16. Яковлева Е.А., Гаджиев М.М., Шарич Э.Э., Яковлева Д.Д. Принятие инвестиционных решений хедж-фондом на основе динамического риск-контроля // Экономика, предпринимательство и право. – 2022. – № 1. – c. 223-238. – doi: 10.18334/epp.12.1.114226.
  17. Воронова Н.С., Шарич Э.Э., Яковлева Д.Д. Архитектура системы поддержки принятия инвестиционных решений в финансовой экономике на основе мониторинга рыночной конъюнктуры // Экономика, предпринимательство и право. – 2020. – № 12. – c. 2933-2946.
  18. Markowitz H.M. Portfolio selection // J. Finance. – 1952. – № 7. – p. 77–91.
  19. Кукор Б.Л., Куршев Е.П., Виноградов А.Н. Разработка динамического когнитивного сценария функционирования предприятия и производственных комплексов в процессе управления экономикой // Теоретические проблемы стратегического планирования на микроэкономическом уровне: Сборник докладов участников секционных заседаний XXI Всероссийского симпозиума. Москва, 2020. – c. 98-101.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Voronova N.S., Yakovleva E.A., Sharich E.E., Yakovleva D.D.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».