High-precision positioning of robotic systems on programme trajectories using satellite navigation measurements
- Authors: Sokolov S.V.1,2, Okhotnikov A.L.2, Marshakov D.V.1, Reshetnikova I.V.1
-
Affiliations:
- Moscow Technical University of Communications and Informatics
- Research and Design Institute of Informatisation, Automation and Communication on Railway Transport
- Issue: Vol 83, No 3 (2024)
- Pages: 270-277
- Section: AUTOMATION AND CONTROL OF TECHNOLOGICAL PROCESSES IN RAILWAY TRANSPORT
- URL: https://journal-vniispk.ru/2223-9731/article/view/272356
- EDN: https://elibrary.ru/knirgq
- ID: 272356
Cite item
Full Text
Abstract
Introduction. The main issue in processing satellite measurements remains the struggle with their interference, especially intensive in rugged terrain, cities, atmospheric disturbances and artificial interference. Use of satellite navigation in recent years shows that such conditions undermine traditional satellite signal processing methods based on the least squares method or its’ modifications. These algorithms are unable to provide the required accuracy of spatial orientation for mobile robotic systems operating under intensive disturbances of various physical nature. This requires new algorithms for processing stochastic information more efficient than the least squares method, in particular, based on the theory of nonlinear stochastic filtration. The main challenge in this case is the synthesis of equations of motion of robotic complexes invariant to its type and random conditions of the environment of its functioning. At the same time, as practice shows, the vast majority of complexes move along programme trajectories that allow for analytical description of their motion parameters, which creates prerequisites for solving the problem of synthesis of these equations.
Materials and methods. This paper proposes a navigation algorithm for robotic systems moving along a given trajectory under random perturbing factors. The algorithm is based on the combination of nonlinear stochastic filtering methods for estimating the state of dynamic systems operating under disturbances with non-traditional algorithms for processing satellite measurements and electronic map data.
Results. For an environmental monitoring robot system, the authors modelled the motion in the plane of the local meridian from an initial point with longitude 30° and latitude 45°. The paper analyses the accuracy of the developed algorithm by estimating the trajectory of the robotic system using two classes of satellite navigation systems: medium and low precision.
Discussion and conclusion. The results of the numerical experiment together with the above-mentioned advantages of the proposed method allow us to consider its effective practical application for positioning of mobile robotic systems.
About the authors
Sergey V. Sokolov
Moscow Technical University of Communications and Informatics; Research and Design Institute of Informatisation, Automation and Communication on Railway Transport
Email: a.ohotnikov@vniias.ru
ORCID iD: 0000-0002-5246-841X
Dr. Sci. (Eng.), Professor, Head of the Department of Informatics and Computer Engineering; Chief Researcher of the Department of Scientific Research, Analytics and Improvement of Scientific and Technical Activity
Russian Federation, Moscow; MoscowAndrey L. Okhotnikov
Research and Design Institute of Informatisation, Automation and Communication on Railway Transport
Author for correspondence.
Email: a.ohotnikov@vniias.ru
ORCID iD: 0000-0002-2863-5863
Deputy Head of the Department – Head of the Strategic Development Department
Russian Federation, MoscowDaniil V. Marshakov
Moscow Technical University of Communications and Informatics
Email: a.ohotnikov@vniias.ru
ORCID iD: 0000-0001-5795-8146
Cand. Sci. (Eng.), Associate Professor of the Department of Informatics and Computer Engineering
Russian Federation, MoscowIrina V. Reshetnikova
Moscow Technical University of Communications and Informatics
Email: a.ohotnikov@vniias.ru
ORCID iD: 0000-0001-7318-7396
Cand. Sci. (Eng.), Associate Professor of the Department of Infocommunication Technologies and Communication Systems
Russian Federation, MoscowReferences
- Bhatti J., Humphreys T. Hostile control of ships via false GPS signals: Demonstration and detection. NAVIGATION: Journal of The Institute of Navigation. 2017;64(1):51-66. https://doi.org/10.1002/navi.183.
- NadlerA., Bar-ItzhackI.Y. An Efficient Algorithm For Attitude Determination Using GPS. In: Proceedings of the 11th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1998). [S. l.]; 1998. p. 1783–1789.
- Соловьев Ю.А. Системы спутниковой навигации. М.: ЭкоТрендз, 2000. 270 с. Solov'ev Yu.A. Satellite navigation systems. Moscow: Eko-Trendz Publ.; 2000. 270 p. (In Russ.).
- Closas P., Luise M., Avila-Rodriguez J., Hegarty C., Lee J. Advances in signal processing for GNSSs [From the Guest Editors]. IEEE Signal Processing Magazine. 2017;34(5):12-15. https://doi.org/10.1109/ msp.2017.2716318.
- Яценков В.С. Основы спутниковой навигации. Системы GPS NAVSTAR и ГЛОНАСС. М.: Горячая линия-Телеком, 2005. 272 с. Yatsenkov V.S. Fundamentals of satellite navigation. GPS, NAVSTAR and GLONASS systems. Moscow: Goryachaya liniya-Telekom Publ.; 2005. 272 p. (In Russ.).
- Сетевые спутниковые радионавигационные системы / В.С. Шебшаевич [и др.]; под ред. В.С. Шебшаевича. 2-е изд., перераб. и доп. М.: Радио и связь, 1993. 414 с. Shebshayevich V.S., Dmitriyev P.P., Ivantsevich I.V. Kalugin A.V., KovalevskiyE.G., KudryavtsevI.V., et al. Network satellite radio-navigation systems. 2nd ed., revised and expanded. Moscow: Radio i svyaz' Publ.; 1993. 414 p. (In Russ.).
- Amin M.G., Closas P., Broumandan A., Volakis J. Vulnerabilities, threats, and authentication in satellite-based navigation systems. Proceedings of the IEEE. 2016;104(6):1169-1173. https://doi.org/10.1109/ jproc.2016.2550638.
- ГЛОНАСС. Принципы построения и функционирования / под ред. А.И. Перова, В.Н. Харисова. Изд. 4-е, перераб. М.: Радиотехника, 2010. 800 p. Perov A.I., Kharisov V.N. (eds.) GLONASS. Principal structure and functions. 4th ed., revised. Moscow: Radiotekhnika Publ.; 2010. 800 p. (In Russ.).
- Closas P., Fernandez-Prades C., Fernandez-Rubio J.A. A Bayesian approach to multipath mitigation in GNSS receivers. IEEE Journal of Selected Topics in Signal Processing. 2009;3(4):695-706. https://doi. org/10.1109/jstsp.2009.2023831.
- Ferrero A., Ferrero R., Jiang W., Salicone S. The Kalman Filter Uncertainty Concept in the Possibility Domain. IEEE Transactions on Instrumentation and Measurement. 2019;68(11):4335-4347. https://doi.org/10.1109/tim.2018.2890317.
- Al Bitar N., Gavrilov A. A novel approach for aiding unscented Kalman filter for bridging GNSS outages in integrated navigation systems. NAVIGATION: Journal of The Institute of Navigation. 2021;68(3):521-539. https://doi.org/10.1002/navi.435.
- Wang D., Ly H., Wu J. Augmented Cubature Kalman filter for nonlinear RTK/MIMU integrated navigation with non-additive noise. Measurement. 2017;97:111-125. https://doi.org/10.1016/j.measurement.2016.10.056.
- Celentano L., Basin M.V. Optimal Estimator Design for LTI Systems with Bounded Noises Disturbances and Nonlinearities Circuits Systems and Signal Processing. Circuits, Systems and Signal Processing. 2021;40:3266-3285. https://doi.org/10.1007/s00034-020-01635-z.
- Dunik J., Biswas S.K., Dempster A.G., Pany T., Closas P. State Estimation Methods in Navigation: Overview and Application. IEEE Aerospace and Electronic Systems Magazine. 2020;35(12):16-31. https://doi.org/10.1109/maes.2020.3002001.
- Тихонов В.И., Харисов В.Н. Статистический анализ и синтез радиотехнических устройстви систем. М.: Радио и связь; 2004. 608 p. Tikhonov V.I., Kharisov V.N. Statistical analysis and synthesis of radio engineering devices and systems. Moscow: Radio i svyaz' Publ.; 2004. 608 p. (In Russ.).
- Langel S., Crespillo O.G., Joerger M. Overbounding the effect of uncertain Gauss-Markov noise in Kalman filtering Navigation. NAVIGATION: Journal of The Institute of Navigation. 2021;68(2):259-276. https://doi.org/10.1002/navi.419.
- Asgari M., Khaloozadeh H. Robust extended Kalman filtering for nonlinear systems with unknown input: a UBB model approach. IET Radar, Sonar and Navigation. 2020;14(11):1837-1844. https://doi.org/10.1049/iet-rsn.2020.0258.
- Miller B.M., Kolosov K.S. Robust estimation based on the least absolute deviations method and the Kalman filter. Automation and Remote Control. 2020;81(11):1994-2010. https://doi.org/10.1134/s0005117920110041.
- Simandl M., Kralovec J. Filtering, prediction and smoothing with Gaussian sum representation. IFAC Proceedings Volumes. 2020;33(15):11571162. https://doi.org/10.1016/s14746670(17)39910x.
- Охотников А. Л., Цветков В. Я., Козлов А. В. Алгоритмы транспортных киберфизических систем // Железнодорожный транспорт. 2021. № 12. С. 49–53. EDN: https://elibrary.ru/kjwwmq. Okhotnikov A.L., Tsvetkov V.Ya., Kozlov A.V. Algorithms of transport cyberphysical systems. Zheleznodorozhnyy transport. 2021;(12):4953. (In Russ.). EDN: https://elibrary.ru/kjwwmq.
- Kucherenko P. A., Sokolov S. V. Analytical Solution of the Navigation Problem on the Orthodromic Trajectory in the Greenwich Coordinate System. Mechanics of Solids. 2018;53:133134. https://doi.org/10.3103/s0025654418050114.
- Kucherenko P. A., Sokolov S. V. Analytical Approximation of Functional Dependences of the Geodesic Line Parameters. Mechanics of Solids. 2020;55(8):12101215. https://doi.org/10.3103/s0025654420080130.
Supplementary files
