Изучение способности бактерий активного ила к образованию биопленок in vitro

Обложка

Цитировать

Полный текст

Аннотация

   Целью работы являлась сравнительная характеристика биопленкообразования в условиях in vitro бактериальных культур, выделенных из активного ила, а также музейных культур, способных к биодеструкции ксенобиотиков: Alcaligenes faecalis 2, Acinetobacter guillouiae 11h, Rhodococcus erythropolis ИЛБИО, Achromobacter pulmonis ПНОС.   Согласно результатам анализа нуклеотидной последовательности гена 16S рРНК идентифицированы штаммы, выделенные из активного ила: Paenibacillus odorifer, Bacillus subtilis, Micrococcus yunnanensis и Bacillus proteolyticus. Исследовано формирование биопленок микроорганизмами на среде LB и синтетической питательной среде (источник углерода – ацетат натрия). При росте клеток на среде LB биомасса биопленки увеличивается у бактерий Paenibacillus odorifer, Bacillus subtilis, Alcaligenes faecalis 2, Achromobacter pulmonis ПНОС. Продолжительность стадии культивирования 72 и 144 часа и дополнительное дозирование субстратов оказали влияние на процесс биопленкообразования: к 144 часам культивирования показатели биомассы составили 0,6–1,3 опт. ед. Отмечено, что для клеток Bacillus subtilis и Paenibacillus odorifer наблюдается увеличение биомассы биопленок в среднем на 63–77 % по сравнению с 72-часовым процессом. На заключительном этапе культивирования (144 часа) содержание экзополисахаридов в матриксе для микроорганизмов Bacillus subtilis и Paenibacillus odorifer составило более 0,02 опт. ед. Метаболическая активность бактерий активного ила, формирующих биопленку, достигла 628–3609 Фл./ОП540. Таким образом, показано, что в процессе роста микроорганизмы активного ила в составе биопленки сохраняют жизнеспособность и метаболическую активность в условиях in vitro.

Об авторах

А. А. Хасанова

Казанский национальный исследовательский технологический университет

Email: hasanovaaigyl@mail.ru

А. С. Сироткин

Казанский национальный исследовательский технологический университет

Email: asirotkin66@gmail.com

Е. В. Перушкина

Казанский национальный исследовательский технологический университет

Email: perushkina_elena@mail.ru

Список литературы

  1. Nicolella C., von Loosdrecht M.C.M., Heijnen J.J. Wastewater treatment with particulate biofilm reactors // Journal of Biotechnology. 2000. Vol. 80, no. 1. P. 1−33. doi: 10.1016/S0168-1656(00)00229-7.
  2. Seviour T., Derlon N., Dueholm M.S., Flemming H.-C., Girbal-Neuhauser E., Horn H., et al. Extracellular polymeric substances of biofilms: suffering from an identity crisis // Water Research. 2019. Vol. 151. P. 1−7. doi: 10.1016/j.watres.2018.11.020.
  3. Flemming H.-C., Wingender J., Szewzyk U., Steinberg P., Rice S.А., Kjelleberg S. Biofilms: an emergent form of bacterial life // Nature Reviews Microbiology. 2016. Vol. 14. P. 563−575. doi: 10.1038/nrmicro.2016.94.
  4. Шагинурова Г.И., Гиниятуллин М.А., Перушкина Е.В., Сироткин А.С. Интенсификация работы биологических очистных сооружений производства полисульфидных каучуков // Экология и промышленность России. 2006. N 6. С. 6−10. EDN: JWMGJV.
  5. Mallikarjuna C., Dash R.R. Statistical analysis of treatment of rice mill wastewater using the aerobic inverse fluidized bed biofilm reactor (AIFBBR) // Process Safety and Environmental Protection. 2023. Vol. 171. Р. 470−481. doi: 10.1016/j.psep.2023.01.031.
  6. Abdelfattah A., Hossain M.I., Cheng L. High-strength wastewater treatment using microbial biofilm reactor : a critical review // World Journal of Microbiology and Biotechnology. 2020. Vol. 36. Р. 75. doi: 10.1007/s11274-020-02853-y.
  7. He H., Wagner B.M., Carlson A.L., Yang C., Daigger G.T. Recent progress using membrane aerated biofilm reactors for wastewater treatment // Water Science and Technology. 2021. Vol. 84, no. 9. Р. 2131−2157. doi: 10.2166/wst.2021.443.
  8. Jang Y., Lee S.-H., Kim N.-K, Ahn C.H., Rittmann B.E., Park H.-D. Biofilm characteristics for providing resilient denitrification in a hydrogen-based membrane biofilm reactor // Water Research. 2023. Vol. 231. Р. 119654. doi: 10.1016/j.watres.2023.119654.
  9. Murshid S., Antonysamy A.J., Dhakshinamoorthy G.P., Jayaseelan A., Pugazhendhi A. A review on biofilm-based reactors for wastewater treatment: Recent advancements in biofilm carriers, kinetics, reactors, economics, and future perspectives // Science of the Total Environment. 2023. Vol. 892. Р. 164796. doi: 10.1016/j.scitotenv.2023.164796.
  10. Перушкина Е.В., Садыкова З.О., Сироткин А.С., Мубаракшина Л.Ф. Очистка промышленных сточных вод от восстановленных соединений серы с использованием иммобилизованных микробных культур // Вода: химия и экология. 2013. N 10. С. 39−44. EDN: ROVYIP.
  11. Preda V.G., Săndulescu O. Communication is the key: biofilms, quorum sensing, formation and prevention // Discoveries. 2019. Vol. 7, no. 3. P. e10. doi: 10.15190/d.2019.13.
  12. Radojević I., Jakovljević V., Grujić S., Ostojić A., Ćirković K. Biofilm formation by selected microbial strains isolated from wastewater and their consortia: mercury resistance and removal potential // Research in Microbiology. 2024. Vol. 175, no. 3. P. 104092. doi: 10.1016/j.resmic.2023.104092.
  13. Kim L.H., Jung Y., Yu H.-W., Chae K.-J., Kim I.S. Physicochemical interactions between rhamnolipids and Pseudomonas aeruginosa biofilm layers // Environmental Science & Technology. 2015. Vol. 49, no. 6. P. 3718–3726. doi: 10.1021/es505803c.
  14. Song T., Zhang X., Li J. The formation and distinct characteristics of aerobic granular sludge with filamentous bacteria in low strength wastewater // Bioresource Technology. 2022. Vol. 360. P. 127409. doi: 10.1016/j.biortech.2022.127409.
  15. Singh D., Goswami R.K., Agrawal K., Chaturvedi V., Verma P. Bio-inspired remediation of wastewater: A contemporary approach for environmental clean-up // Current Research in Green and Sustainable Chemistry. 2022. Vol. 5. P. 100261. doi: 10.1016/j.crgsc.2022.100261.
  16. Демаков В.А., Васильев Д.М., Максимова Ю.Г., Павлова Ю.А. Овечкина Г.В., Максимов А.Ю. Бактерии активного ила биологических очистных сооружений, трансформирующие цианопиридины и амиды пиридинкарбоновых кислот // Микробиология. 2015. Т. 84. N 3. С. 369−378. doi: 10.7868/S0026365615030039. EDN: TQQVBB.
  17. Максимова Ю.Г., Быкова Я.Е., Зорина А.С., Никулин С.М., Максимов А.Ю. Влияние немодифицированных многостенных нанотрубок на формирование и разрушение бактериальных биопленок // Микробиология. 2022. Т. 91. N 4. С. 507−516. doi: 10.31857/S0026365621100694. EDN: PXWGDO.
  18. Максимова Ю.Г., Сергеева А.А., Овечкина Г.В., Максимов А.Ю. Деградация пиридина суспензиями и биопленками штаммов Achromobacter pulmonis ПНОС и Burkholderia dolosa БОС, выделенных из активного ила очистных сооружений // Биотехнология. 2020. Т. 36. N 2. С. 86–98. URL: http://www.csl.isc.irk.ru/BD/%D0%96%D1%83%D1%80%D0%BD%D0%B0%D0%BB%D1%8B/%D0%91%D0%B8%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D1%8F%202020%20%D0%A236/%E2%84%96%202/86-98.pdf. EDN: IYFZFI.
  19. Зорина А.С., Максимова Ю.Г. Дисперсия моно- и смешанных биопленок Alcaligenes faecalis 2 и Rhodococcus ruber gt 1 // Вестник Пермского университета. Серия Биология. 2019. N 2. C. 153−158. URL: https://cyberleninka.ru/article/n/dispersiya-mono-i-smeshannyh-bioplenok-alcaligenes-faecalis-2-i-rhodococcus-ruber-gt-1. EDN: KAORCR.
  20. Maksimova Y., Bykova Y., Maksimov A. Functionalization of multi-walled carbon nanotubes changes their antibiofilm and probiofilm effects on environmental Bacteria // Microorganisms. 2022. Vol. 10, no. 8. P. 1627. doi: 10.3390/microorganisms10081627.
  21. Singh P., Srivastava S., Malhotra R., Mathur P. Identification of Candida auris by PCR and assessment of biofilm formation by crystal violet assay // Indian Journal of Medical Microbiology. 2023. Vol. 46. P. 100421. doi: 10.1016/j.ijmmb.2023.100421.
  22. Mathur T., Singhal S., Khan S., Upadhyay D.J., Fatma T., Rattan A. Detection of biofilm formation among the clinical isolates of Staphylococci: an evaluation of three different screening methods // Indian Journal of Medical Microbiology. 2006. Vol. 24, no. 1. P. 25–29. doi: 10.1016/S0255-0857(21)02466-X.
  23. Luzak B., Siarkiewicz P., Boncler M. An evaluation of a new high-sensitivity PrestoBlue assay for measuring cell viability and drug cytotoxicity using EA.hy926 endothelial cells // Toxicology in Vitro. 2022. Vol. 83. P. 105407. doi: 10.1016/j.tiv.2022.105407.
  24. Wei Y., Shen D., Lukwambe B., Wang Y., Yang W., Zhu J., et al. The exogenous compound bacteria alter microbial community and nutrients removal performance in the biofilm unit of the integrated aquaculture wastewater bioremediation systems // Aquaculture Reports. 2022. Vol. 27. P. 101414. doi: 10.1016/j.aqrep.2022.101414.
  25. Zorina A.S., Maksimova Yu.G., Demakov V.A. Biofilm formation by monocultures and mixed cultures of Alcaligenes faecalis 2 and Rhodococcus ruber gt 1 // Microbiology. 2019. Vol. 88. P. 164–171. doi: 10.1134/S0026261719020140.
  26. Nicolella C., van Loosdrecht M.C.M., Heijnen J.J. Wastewater treatment with particulate biofilm reactors // Journal of Biotechnology. 2000. Vol. 80, no. 1. P. 1–33. doi: 10.1016/S0168-1656(00)00229-7.
  27. Zhao J., Liu T., Meng J., Hu Z., Lu X., Hu S., et al. Ammonium concentration determines oxygen penetration depth to impact the suppression of nitrite-oxidizing bacteria inside partial nitritation and anammox biofilms // Chemical Engineering Journal. 2023. Vol. 455. P. 140738. doi: 10.1016/j.cej.2022.140738.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».