Поиск и анализ разнообразия структур CRISPR-Cas-систем патогенных штаммов Clostridium botulinum с целью создания экологически безопасных фаговых препаратов

Обложка

Цитировать

Полный текст

Аннотация

В работе представлено биоинформатическое исследование разнообразия CRISPR-Cas-систем в геномах Clostridium botulinum и детектируемых ими фагов с перспективной целью их таргетного скрининга. Объектом исследования стали 49 полных хромосомных последовательностей бактерий, взятых из базы данных GenBank. Для идентификации cas-генов использовался программный комплекс MacSyFinder с применением профилей HMM из баз данных PFAM и TIGRFAM. Поиск и анализ CRISPR-кассет осуществлялся с помощью трех независимых программ: CRISPRFinder, PILER-CR и CRISPR Recognition Tool, что обеспечило высокую точность определения структуры кассет. Поиск протоспейсеров проводился с использованием программы CRISPRTarget и алгоритма BLASTn против вирусных баз данных RefSeq-Viral. Исследование включало сопоставление последовательностей спейсеров с геномами фагов для выявления комплементарных участков. Анализ фагового иммунитета показал преобладание фагов Cellulophaga (19%), что связано с экологическими особенностями Clostridium botulinum, а также значительную долю фагов Aeromonas и Bacillus (12,5%). Следующую группу фагов, преимущественно направленных на кишечную микрофлору, составили виды Enterococcus, Escherichia, Lactococcus (6–10%). Найдены протоспейсеры редких фагов (по 3%): Acidianus filamentous, Prochlorococcus, Pseudoalteromonas, Stenotrophomonas, Synechococcus. Полученные результаты указывают на сложную структуру CRISPR-Cas-систем Clostridium botulinum, эволюционно формирующихся под влиянием различных экологических ниш.

Об авторах

Г. А. Тетерина

Иркутский государственный университет

Email: galina.teterina.91@mail.ru
ORCID iD: 0009-0007-0487-8223

В. П. Саловарова

Иркутский государственный университет

Email: vsalovarova@gmail.com
ORCID iD: 0000-0002-3693-9058

Ю. П. Джиоев

Иркутский государственный медицинский университет

Email: alanir07@mail.ru
ORCID iD: 0000-0001-5410-5113

Н. А. Арефьева

Иркутский государственный университет; Иркутский государственный медицинский университет; Научный центр проблем здоровья семьи и репродукции человека

Email: arefieva.n4@gmail.com
ORCID iD: 0000-0003-2222-4518

А. Ю. Борисенко

Иркутский государственный медицинский университет

Email: 89500720225@mail.ru

Ю. С. Букин

Иркутский государственный университет; Лимнологический институт СО РАН

Email: bukinyura@mail.ru
ORCID iD: 0000-0002-4534-3846

С. В. Эрдынеев

Иркутский государственный медицинский университет; Иркутский научно-исследовательский противочумный институт Сибири и Дальнего Востока

Email: orry230@yandex.ru
ORCID iD: 0009-0006-7937-1382

Л. А. Степаненко

Иркутский государственный медицинский университет

Email: steplia@mail.ru
ORCID iD: 0000-0002-5792-7283

Д. А. Антипин

Иркутский государственный медицинский университет

Email: mieshamecka@yandex.ru
ORCID iD: 0009-0003-9442-9907

К. Б. Кахиани

Иркутский государственный медицинский университет

Email: kagkkris12@gmail.com
ORCID iD: 0009-0000-7901-7056

А. Э. Макарова

Иркутский государственный медицинский университет

Email: eamak18@mail.ru
ORCID iD: 0009-0004-2207-5668

Список литературы

  1. Hill K.K., Smith T.J. Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. In: Rummel A., Binz T. (eds). Botulinum Neurotoxins. Current Topics in Microbiology and Immunology. Berlin: Springer; 2012, vol. 364, р. 1-20. doi: 10.1007/978-3-642-33570-9_1.
  2. Zhang S., Masuyer G., Zhang J., Shen Y., Lundin D., Henriksson L., et al. Identification and characterization of a novel botulinum neurotoxin. Nature Communication. 2017:14130. doi: 10.1038/ncomms14130.
  3. Bowe B.K., Wentz T.G., Gregg B.M., Tepp W.H., Schill K.M., Sharma S., et al. Genomic diversity, competition, and toxin production by group I and II Clostridium botulinum strains used in food challenge studies. Microorganisms. 2022;10(10):1895. doi: 10.3390/microorganisms10101895.
  4. Carter A.T., Peck M.W. Genomes, neurotoxins and biology of Clostridium botulinum group I and group II. Research in Microbiology. 2015;166(4):303-317. doi: 10.1016/j.resmic.2014.10.010.
  5. Brunt J., van Vliet A.H.M., Stringer S.C., Carter A.T., Lindström M., Peck M.W. Pan-genomic analysis of Clostridium botulinum group II (non-proteolytic C. botulinum) associated with foodborne botulism and isolated from the environment. Toxins. 2020;12(5):306. doi: 10.3390/toxins12050306.
  6. Smith T.J., Williamson C.H.D., Hill K.K., Johnson S.L., Xie G., Anniballi F., et al. The distinctive evolution of orfX Clostridium parabotulinum strains and their botulinum neurotoxin type A and F gene clusters is influenced by environmental factors and gene interactions via mobile genetic elements. Frontiers in Microbiology. 2021;12:566908. doi: 10.3389/fmicb.2021.566908.
  7. Nawrocki E.M., Bradshaw M., Johnson E.A. Botulinum neurotoxin-encoding plasmids can be conjugatively transferred to diverse clostridial strains. Scientific Reports. 2018;8:3100. doi: 10.1038/s41598-018-21342-9.
  8. Yang L., Ning Q., Tang S.-S. Recent advances and next breakthrough in immunotherapy for cancer treatment. Journal of Immunology Research. 2022:8052212. doi: 10.1155/2022/8052212.
  9. Alkhnbashi O.S., Meier T., Mitrofanov A., Backofen R., Vob B. CRISPR-Cas bioinformatics. Methods. 2020;172:3-11. doi: 10.1016/j.ymeth.2019.07.013.
  10. Butiuc-Keul A., Farkas A., Carpa R., Iordache D. CRISPR-Cas system: the powerful modulator of accessory genomes in prokaryotes. Microbial Physiology. 2022;32 (1-2):2-17. doi: 10.1159/000516643.
  11. Tang Y., Gao L., Feng W., Guo C., Yang Q., Li F., et al. The CRISPR-Cas toolbox for analytical and diagnostic assay development. Chemical Society Reviews. 2021;50(21):11844-11869. doi: 10.1039/D1CS00098E.
  12. Koonin E.V., Makarova K.S. Origins and evolution of CRISPR-Cas systems. Philosophic Transactions of the Royal Society B. Biological Sciences. 2019;374(1772):20180087. doi: 10.1098/rstb.2018.0087.
  13. Koonin E.V., Makarova K.S. Mobile genetic elements and evolution of crispr-cas systems: all the way there and back. Genome Biology and Evolution. 2017;9(10):2812-2825. doi: 10.1093/gbe/evx192.
  14. Koonin E.V., Makarova K.S., Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology. 2017;37:67-78. doi: 10.1016/j.mib.2017.05.008.
  15. Bhatia S., Pooja, Yadav S.K. CRISPR-Cas for genome editing: Classification, mechanism, designing and applications. International Journal of Biological Macromolecules. 2023;238:124054. doi: 10.1016/j.ijbiomac.2023.124054.
  16. Chen C., Wang Z., Qin Y. CRISPR/Cas9 system: recent applications in immuno-oncology and cancer immunotherapy. Experimental Hematology and Oncology. 2023;12(1):95. doi: 10.1186/s40164-023-00457-4.
  17. Bhokisham N., Laudermilch E., Traeger L.L., Bonilla T.D., Ruiz-Estevez M., Becker J.R. CRISPR-Cas system: the current and emerging translational landscape. Cells. 2023;12(8):1103. doi: 10.3390/cells12081103.
  18. Huang S., Dai R., Zhang Z., Zhang H., Zhang M., Li Z., et al. CRISPR/Cas-based techniques for live-cell imaging and bioanalysis. International Journal of Molecular Sciences. 2023;24(17):13447. doi: 10.3390/ijms241713447.
  19. Van der Oost J., Westra E.R., Jackson R.N., Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nature Reviews. Microbiology. 2014;12(7):479-492. doi: 10.1038/nrmicro3279.
  20. Behler J., Hess W.R. Approaches to study CRISPR RNA biogenesis and the key players involved. Methods. 2020;172:12-26. doi: 10.1016/j.ymeth.2019.07.015.
  21. Makarova K.S., Wolf Y.I., Alkhnbashi O.S., Costa F., Shah S.A., Saunders S.J., et al. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology. 2015;13:722-736. doi: 10.1038/nrmicro3569.
  22. Pursey E., Dimitriu T., Paganelli F.L., Westra E.R., van Houte S. CRISPR-Cas is associated with fewer antibiotic resistance genes in bacterial pathogens. Philosophic Transactions of the Royal Society B. Bioяlogical Sciences. 2022;377:20200464. doi: 10.1098/rstb.2020.0464.
  23. Negahdaripour M., Nezafat N., Hajighahramani N., Rahmatabadi S.S., Ghasemi Y. Investigating CRISPR-Cas systems in Clostridium botulinum via bioinformatics tools. Infection, Genetics and Evolution. 2017;54:355-373. doi: 10.1016/j.meegid.2017.06.027.
  24. Wentz T.G., Tremblay B.J.M., Bradshaw M., Doxey A.C., Sharma S.K., Sauer J.-D., et al. Endogenous CRISPR-Cas systems in group I Clostridium botulinum and Clostridium sporogenes do not directly target the botulinum neurotoxin gene cluster. Frontiers in Microbiology. 2022;12:787726. doi: 10.3389/fmicb.2021.787726.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).