The first aluminium alloy road bridge in Russia

Abstract

Introduction. Nowadays, structures made of modern aluminium alloys are increasingly used in almost all areas of industrial and construction production, which is a consequence of the unique physical and mechanical properties of aluminium alloys, which make it possible to create structures of various purposes that are effective in weight, strength and aesthetic parameters, while having increased corrosion resistance compared with steel structures. Combinations of such unique properties of aluminium alloys have proved to be extremely in demand in many areas of construction and, in particular, in bridge construction, initially in the construction of a wide variety of pedestrian bridges, and more recently, more often in the construction of road bridges. The presence of numerous examples of already built and operated bridges in the world and domestic construction practice proved their obvious advantages in terms of manufacturability and speed of construction and the practical absence of problems during operation, which served as an incentive for the increasingly expanding use of aluminium alloys for the construction of road bridges.Materials and methods. This trend did not bypass Russia, and by December 2023, on the initiative of the Aluminum Association and UC RUSAL, the state order of the Government of the Nizhny Novgorod Region, the first road bridge in the Russian Federation across the river was designed, built and put into operation. Linda. The bridge is two-lane, 4-span, 72 m long, on reinforced concrete supports, the superstructure is entirely made of aluminium alloys.Results. This construction was preceded by a long (since 2016) stage of research and development (R&D), the results of which served as the basis for the optimal choice of aluminium alloy grades, production technologies and design methods for this bridge. NRU MGSU is a leading organisation, which, with the participation of a number of other organisations, successfully carried out this stage.Conclusions. The aluminium alloy road bridge over the Linda River in the Nizhny Novgorod Region was commissioned in December 2023. An automated monitoring system will be installed on the bridge, allowing remote monitoring of the technical condition of the bridge in continuous mode.

About the authors

A. V. Korgin

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: korguine@mgsu.ru

E. V. Vasiliev

Aluminum Association

Email: evgeniy.vasiliev@aluminas.ru

O. G. Maslov

Aluminum Association

Email: oleg.maslov@aluminas.ru

References

  1. Бородкина В.В., Рыжкова О.В., Улас Ю.В. Перспективы развития алюминиевого производства в России // Фундаментальные исследования. 2018. № 12–1. С. 72–77. EDN VRUWEK.
  2. Коргин А.В., Романец В.А., Ермаков В.А., Зейд Килани Л.З. Перспективы и проблемы применения алюминиевых сплавов при строительстве мостов в Российской Федерации // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2018. № 9. С. 42–48. doi: 10.12737/article_5bab4a1a42eee3.23235487. EDN YLEPXF.
  3. Трищенко В.И. Алюминиевые мосты: спрос отстает от предложения // Транспорт Российской Федерации. Журнал о науке, практике, экономике. 2017. № 5 (72). С. 73–78. EDN ZQQNBD.
  4. Beaulieu D., Intemjscia J. Mission technique sur les ponts en aluminium // Chantier infrastructures et Ouvrage d’art. Tampa Bey, Floride, US, 2015.
  5. Tindall P. Aluminium in Bridges // ICE Manual of Bridge Engineering. 2008.
  6. Subudh K., Das S., Kaufman J. Aluminum alloys for bridges and bridge decks. Secat. Inc., 1505 Bull Lea Road, Lexington, KY 40511, 2007.
  7. Hoglund T., Nilsson L. Aluminium in Bridge Decks and in a New Military Bridge in Sweden // Structural Engineering International. 2006. Vol. 16. Issue 4. Рр. 348–351. doi: 10.2749/101686606778995100
  8. Walbridge S., Chevrotière A.D.L. Opportunities for the use of aluminum in Vehicular Bridge Construction. University of Waterloo, 2012.
  9. Okura I. Application of aluminium alloys to bridges and joining technologies // Welding International. 2003. Vol. 17. Issue 10. Рр. 781–785. doi: 10.1533/weli.17.10.781.22037
  10. Korgin A.V., Odesskii P.D., Ermakov V.A., Kelani L.Z.Z., Romanets V.A., Koroleva E.A. Strength of aluminum alloys for bridge building // Russian Metallurgy (Metally). 2020. Vol. 2020. Issue 4. Рр. 373–382. doi: 10.1134/S003602952004014X
  11. Коргин А.В., Романец В.А., Зейд Килани Л.З., Ермаков В.А. Особенности проектирования ортотропных алюминиевых плит дорожного настила // Актуальные проблемы строительной отрасли и образования : сб. докл. Первой Национальной конф. 2020. С. 88–94. EDN FQBBJI.
  12. Rom S., Agerskov H. Fatigue in aluminum highway bridges under random loading // International Journal of Applied Science and Technology. 2014. Vol. 4. Issue 6. Рр. 95–107.
  13. Siwowski T. FEM modelling and analysis of a certain aluminium bridge deck panel. Rzeszów University of Technology, Poland, Archives of civil engineering, 2009.
  14. Korgin A.V., Romanets V.A. NRU MSUCE: Fatigue strength of aluminum alloy structures // IIOAB. 2020. Vol. 1. Issue S2. Pр. 1–10.
  15. Дриц А.М., Нуждин В.Н., Овчинников В.В., Конюхов А.Д. Исследование усталостной долговечности основного материала и сварных соединений листов из сплава 1565ч // Цветные металлы. 2015. № 12 (876). С. 88–93. doi: 10.17580/tsm.2015.12.17. EDN WHOFFV.
  16. Hwa L.P. BEng: Fatigue behaviour of 6061 aluminium alloy and its composite. Dublin City University, 2001.
  17. Coughlin R., Walbridge S. Fatigue testing and analysis of aluminum welds under in-service highway bridge loading conditions // Journal of Bridge Engineering. 2012. Vol. 17. Issue 3. Рр. 409–419. doi: 10.1061/(asce)be.1943-5592.0000223
  18. Maljaars J., Soetens F., De Kluyver D. Structural Design of Aluminium Bridge Decks for Existing Traffic Bridges // IABSE Congress, Chicago 2008: Creating and Renewing Urban Structures — Tall Buildings, Bridges and Infrastructure. 2008. Рр. 584–585. doi: 10.2749/222137908796293893
  19. Овчинников В.В., Парфеновская О.А., Губин А.М. Влияние режима сварки трением с перемешиванием на прочность стыковых соединений алюминиевого сплава 1565ч // Технология металлов. 2020. № 7. С. 23–32. doi: 10.31044/1684-2499-2020-0-7-23-32. EDN FWDNSS.
  20. Ищенко А.Я., Подельников С.В., Покляцкий А.Г. Сварка трением с перемешиванием алюминиевых сплавов // Автоматическая сварка. 2007. № 11.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».