Deflagration-to-detonation transition in a semiconfined slit combustor with separate supply of ethylene and oxygen at single-point and two-point ignition
- Autores: Eyvazova T.I.1,2, Shamshin I.O.2, Ivanov V.S.2, Aksenov V.S.2,1, Frolov S.M.2,1
-
Afiliações:
- MEPhI National Research Nuclear University
- N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Edição: Volume 17, Nº 3 (2024)
- Páginas: 34-48
- Seção: Articles
- URL: https://journal-vniispk.ru/2305-9117/article/view/277535
- DOI: https://doi.org/10.30826/CE24170304
- EDN: https://elibrary.ru/XGKYKM
- ID: 277535
Citar
Resumo
The paper experimentally determines the conditions for mild detonation initiation in a vertical semiconfined flat layer of stoichiometric ethylene–oxygen mixture of finite thickness. Pointwise ignition of the layer is performed by a single spark gap or two spatially separated spark gaps. Mild detonation initiation means deflagration-to-detonation transition (DDT). The flame and detonation propagation process is recorded by high-speed black-and-white and color video cameras. Mixture ignition by a single spark gap shows that the probability of DDT monotonically increases from 0 to 1 with the height of the combustible mixture layer. There is always the critical height of the layer, at which this probability has an intermediate value between 0 and 1. In the experiments, the critical height of the layer was 80–100 mm. Simultaneous ignition of the mixture by two spark gaps can lead to both deceleration and acceleration of DDT. Comparison of black-and-white and color images of the DDT process shows that the shapes of the flame front and detonation wave are similar in both cases but the color image allows obtaining additional information on the flame temperature. However, the black-and-white image with a large dynamic range better displays the structure of the flame front and detonation wave. The obtained results can be used in developing the procedures for safe and reliable starting of continuous-detonation engines, which require careful control of the time of filling the engine combustor with fuel and oxidizer as well as the ignition time of the explosive mixture.
Texto integral

Sobre autores
Tatiana Eyvazova
MEPhI National Research Nuclear University; N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: Tanya.eyvazova@mail.ru
Student; Engineer
Rússia, Moscow; MoscowIgor Shamshin
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: igor_shamshin@mail.ru
Candidate of Sciences in Physics and Mathematics, Leading Researcher
Rússia, MoscowVladislav Ivanov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: ivanov.vls@gmail.com
Doctor of Sciences in Physics and Mathematics, Leading Researcher
Rússia, MoscowVictor Aksenov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; MEPhI National Research Nuclear University
Email: v.aksenov@mail.ru
Candidate of Sciences in Physics and Mathematics, Senior Researcher; Associate Professor
Rússia, Moscow; MoscowSergey Frolov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; MEPhI National Research Nuclear University
Email: smfrol@chph.ras.ru
Doctor of Sciences in Physics and Mathematics, Head of the Department, Head of the Laboratory; Professor
Rússia, Moscow; MoscowBibliografia
- Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. 2006. Continuous spin detonations. J. Propul. Power 22:1204– 1216.
- Rankin, B. A., M. L. Fotia, A. G. Naples, C. A. Stevens, J. L. Hoke, T. A. Kaemming, S. W. Theuerkauf, and F. R. Schauer. 2016. Overview of performance, application, and analysis of rotating detonation engine technologies. J. Propul. Power 33(1):1–13. doi: 10.2514/1.B36303.
- Zhou, R., D. Wu, and J.-P. Wang. 2016. Progress of continuously rotating detonation engines. Chinese J. Aeronaut. 29(1):15–29. doi; 10.1016/j.cja.2015.12.006.
- Anand, V., and E. Gutmark. 2019. Rotating detonation combustors and their similarities to rocket instabilities. Prog. Energ. Combust. 73:182–234.
- Wang, G., W. Liu, S. Liu, et al. 2021. Experimental verification of cylindrical air-breathing continuous rotating detonation engine fueled by non-premixed ethylene. Acta Astronaut. 189:722–732.
- Heister, S. D., J. Smallwood, A. Harroun, K. Dille, A. Martinez, and N. Ballintyn. 2022. Rotating detonation combustion for advanced liquid propellant space engines. Aerospace 9:581. doi: 10.3390/aerospace9100581.
- Shamshin, I. O., V. S. Ivanov, V. S. Aksenov, P. A. Gusev, and S. M. Frolov. 2022. Experimental study of the initial stage of the operation process in detonation rocket and air-breathing engines. Advances in detonation research. Ed. S. M. Frolov. Moscow: TORUS PRESS. 17–20. doi: 10.30826/ICPCD13A07.
- Shamshin, I. O., V. S. Ivanov, V. S. Aksenov, P. A. Gusev, and S. M. Frolov. 2022. Nachal’naya stadiya rabochego protsessa v nepreryvno-detonatsionnom dvigatele [Initial stage of the operation process in a rotating detonation engine]. Goren. Vzryv (Mosk.) — Combustion and Explosion 15(4):67–78. doi: 10.30826/CE22150407.
- Shamshin, I. O., V. S. Ivanov, V. S. Aksenov, P. A. Gusev, K. A. Avdeev, and S. M. Frolov. 2023. Rasprostranenie plameni i perekhod goreniya v detonatsiyu v poluogranichennoy ploskoy shchelevoy kamere sgoraniya s razdel’noy podachey etilena i kisloroda [Flame propagation and deflagration-to-detonation transition in a semiconfined flat slit combustor with separate supply of ethylene and oxygen]. Goren. Vzryv (Mosk.) — Combustion and Explosion 16(4):38–65. doi: 10.30826/CE23160405.
- Shamshin, I. O., V. S. Ivanov, V. S. Aksenov, P. A. Gusev, and S. M. Frolov. 2023. Deflagration-to-detonation transition in a semi-confined slit combustor filled with nitrogen diluted ethylene–oxygen mixture. Energies 16:1098. doi: doi.org/10.3390/en16031098.
- Shamshin, I. O., V. S. Ivanov, V. S. Aksenov, P. A. Gusev, K. A. Avdeev, and S. M. Frolov. 2023. Mild detonation initiation in rotating detonation engines: An experimental study of the deflagration-to-detonation transition in a semiconfined flat slit combustor with separate supplies of fuel and oxidizer. Aerospace 10:988. doi: 10.3390/aerospace10120988.
- Ivanov, V. S., I. O. Shamshin, and S. M. Frolov. 2023. Computational study of deflagration-to-detonation transition in a semi-confined slit combustor. Energies 16:7028. doi: 10.3390/en16207028.
- Shamshin, I. O., V. S. Ivanov, V. S. Aksenov, P. A. Gusev, S. M. Frolov, D. A. Vnuchkov, V. I. Zvegintsev, S. V. Lukashevich, and D. G. Nalivaichenko. 2023. Perekhod goreniya v detonatsiyu v poluogranichennom shchelevom zazore: experiment i raschet [Deflagration-to-detonation transition in semiconfined slit combustor: Experiment and calculation]. Protsessy goreniya i detonatsii v perspektivnykh energotekhnologiyakh [Combustion and detonation processes in advanced power technologies]. Eds. D. M. Markovich and O. V. Sharypov. Novosibirsk: NSU. 364–386.
- Shamshin, I. O., V. S. Ivanov, V. S. Aksenov, P. A. Gusev, and S. M. Frolov. 2024. Deflagration-to-detonation transition in a semiconfined slit combustor with separate supply of fuel and oxidizer. Transient deflagrations and detonation. Moscow: TORUS PRESS. 51–58. doi: 10.30826/ICPCD14A09.
Arquivos suplementares
