Detonation wave structure in a two-phase system containing gaseous oxidizer and liquid fuel droplets
- Authors: Ivanov V.S.1,2, Frolov S.M.1,3,2, Zangiev A.E.1
-
Affiliations:
- N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Scientific Research Institute for System Analysis of the Russian Academy of Sciences
- MEPhI National Research Nuclear University
- Issue: Vol 17, No 3 (2024)
- Pages: 49-61
- Section: Articles
- URL: https://journal-vniispk.ru/2305-9117/article/view/277539
- DOI: https://doi.org/10.30826/CE24170305
- EDN: https://elibrary.ru/ZNTNLJ
- ID: 277539
Cite item
Abstract
The results of three-dimensional simulation of the propagation of detonation waves in suspensions of liquid isooctane droplets in air are presented. The calculation technique is based on solving mass, momentum, and energy conservation equations for the two-phase compressible turbulent reacting flow taking into account the movement, aerodynamic breakup, heating and evaporation of droplets, the finite-rate mixing of fuel components, and chemical transformations. The reliability of the method is verified by comparing the calculated and measured propagation velocities of two-phase detonations in a vertical channel of square cross section. The influence of the prehistory of the formation of a two-phase combustible mixture on the propagation velocity and structure of detonation waves in the channel is considered. New data have been obtained on the structure of the detonation waves in two-phase systems.
Full Text

About the authors
Vladislav S. Ivanov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Scientific Research Institute for System Analysis of the Russian Academy of Sciences
Author for correspondence.
Email: ivanov.vls@gmail.com
Doctor of Sciences in Physics and Mathematics, Leading Researcher; Researcher
Russian Federation, Moscow; MoscowSergey M. Frolov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; MEPhI National Research Nuclear University; Scientific Research Institute for System Analysis of the Russian Academy of Sciences
Email: smfrol@chph.ras.ru
Doctor of Sciences in Physics and Mathematics, Head of the Department, Head of the Laboratory; Professor; Leading Researcher
Russian Federation, Moscow; Moscow; MoscowAlan E. Zangiev
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: sydra777@gmail.com
Candidate of Sciences in Physics and Mathematics, Researcher
Russian Federation, MoscowReferences
- Roy, G. D., S. M. Frolov, A. A. Borisov, and D. W. Netzer. 2004. Pulse detonation propulsion: Challenges, current status, and future perspective. Prog. Energ. Combust. 30(6):545–672.
- Frolov, S. M., V. S. Aksenov, V. S. Ivanov, I. O. Shamshin, and S. A. Nabatnikov. 2019. Broskovye ispytaniya bespilotnogo letatel’nogo apparata s pryamotochnym vozdushnoreaktivnym impul’sno-detonatsionnym dvigatelem [Сatapult launching tests of an unmanned aerial vehicle with a ramjet pulsed-detonation engine]. Goren. Vzryv (Mosk.) — Combustion and Explosion 12(1):63–72. doi: 10.30826/CE19120108.
- Bykovsky, F. A., and S. A. Zhdan. 2013. Nepreryvnaya spinovaya detonatsiya [Continuous spin detonation]. Novosibirsk: Institute of Hydrodynamics SB RAS Publs. 422 p.
- Frolov, S. M., V. S. Ivanov, I. O. Shamshin, V. S. Aksenov, M. Yu. Vovk, I. V. Mokrynskij, V. A. Bruskov, D. V. Igonkin, S. N. Moskvitin, A. A. Illarionov, and E. Yu. Marchukov. 2022. Forsazhnaya kamera s detonatsionnym goreniem kerosina [Afterburner operating on detonative combustion of liquid jet propulsion fuel]. Goren. Vzryv (Mosk.) — Combustion and Explosion 15(1):67–71. doi: 10.30826/CE22150108.
- Smirnov, N., V. Nikitin, V. R. Dushin, Yu. G. Filippov, V. Nerchenko, and J. Khadem. 2015. Combustion onset in non-uniform dispersed mixtures. Acta Astronaut. 115. doi: 10.1016/j.actaastro.2015.04.021.
- Fedorov, A. V., and T. A. Khmel. 2005. Numerical simulation of formation of cellular heterogeneous detonation of aluminum particles in oxygen. Combust. Explo. Shock Waves 41:435–448. doi: 10.1007/s10573-005-0054-7.
- Dabora, E. K., and L. P. Weinberger. 1974. Present status of detonations in two-phase systems. Acta Astronaut. 1(3-4):361–372. doi: 10.1016/0094-5765(74)90103-9.
- Mitrofanov, V. V. 2003. Detonatsiya gomogennykh i geterogennykh sistem [Detonation of homogeneous and heterogeneous systems]. Novosibirsk: Institute of Hydrodynamics SB RAS Publs. 200 p.
- Kailasanath, K. 2003. Recent developments in the research on pulse detonation engines. AIAA J. 41(2):145– 159.
- Tangirala, V., A. Dean, O. Peroomian, and S. Palaniswamy. 2007. Investigations of two-phase detonations for performance estimations of a pulsed detonation engine. AIAA Paper No. 2007-1173. doi: 10.2514/6.2007-1173.
- Frolov, S. M., and V. S. Posvyanskii. 2010. Detonability of liquid-fuel drop suspensions in air. Explosion dynamics and hazards. Eds. S. M. Frolov, F. Zhang, and P. Wolanski. Moscow: TORUS PRESS. 337–364.
- Meng, Q., M. Zhao, Y. Xu, L. Zhang, and H. Zhang. 2022. Structure and dynamics of spray detonation in n-heptane droplet-vapor–air mixtures. 43 p. doi: 10.48550/ arXiv.2209.11913.
- Jourdaine, N., N. Tsuboi, and A. K. Hayashi. 2022. Investigation of liquid n-heptane/air spray detonation with an Eulerian–Eulerian model. Combust. Flame 244:112278. doi: 10.1016/j.combustflame.2022.112278.
- Ivanov, V. S., and S. M. Frolov. 2010. Matematicheskoe modelirovanie perekhoda goreniya v detonatsiyu v trube so spiral’yu Shchelkina i fokusiruyushchim ustroystvom [Mathematical modeling of the combustion-todetonation transition in a tube with a Schelkin spiral and a focusing device]. Goren. Vzryv (Mosk.) — Combustion and Explosion 3:63–70.
- Ivanov, V. S., I. O. Shamshin, and S. M. Frolov. 2023. Computational study of deflagration-to-detonation transition in a semi-confined slit combustor. Energies 16:7028.
- Frolov, S. M., V. S. Aksenov, and I. O. Shamshin. 2017. Perekhod goreniya v detonatsiyu v stratifitsirovannoy sisteme kislorod – plenka zhidkogo topliva [Deflagrationto-detonation transition in a stratified system oxygen – liquid fuel film]. Khim. Fizika 36(6):34–44. doi: 10.7868/S0207401X17060073.
- Tannehill J. C., A. A. Dale, and R. H. Pletcher. 1997. Computational fluid mechanics and heat transfer. Washington, DC: Taylor and Francis, 1997. 792 p.
- Versteeg, H. K., and W. Malalasekera. 2007. An introduction to computational fluid dynamics: The finite volume method. London: Longman Scientific and Technical. 696 p.
- Dukowicz, J. K. Quasi-steady droplet change in the presence of convection. Los Alamos, CA: University of California, 1979. 18 p.
- Reitz, R. D. 1987. Modeling atomization processes in high-pressure vaporizing sprays. Atomisation Spray Technology 3(4):309–337.
- Pope, S. B. 1985. PDF methods for turbulent reactive flows. Prog. Energ. Combust. 11(2):119–192.
- Frolov, S. M., and V. S. Ivanov. 2010. Combined flame tracking particle method for numerical simulation of deflagration-to-detonation transition. Deflagrative and detonative combustion. Eds. G. Roy and S. Frolov. Moscow: TORUS PRESS. 133–156.
- Frolov, S. M., V. S. Ivanov, B. Basara, and M. Suffa. 2013. Numerical simulation of flame propagation and localized preflame autoignition in enclosures. J. Loss Prevent. Proc. 26:302–309.
- Basevich, V. Ya., A. A. Belyaev, S. N. Medvedev, V. S. Posvyansky, and S. M. Frolov. 2015. Kineticheskie detal’nyy i global’nyy mekhanizmy dlya surrogatnogo topliva [Detailed and global kinetic mechanisms for surrogate fuel]. Goren. Vzryv (Mosk.) — Combustion and Explosion 8(1):21–28.
- Benmahammed, М. А., B. Veyssiere, B. A. Khasainov, and M. Mara. 2016. Effect of gaseous oxidizer composition on the detonability of isooctane–air sprays. Combust. Flame165:198–207.
- Ivanov, V. S., and S. M. Frolov. 2024. Three-dimensional mathematical simulation of two-phase detonation in the system of a gaseous oxidizer with fuel droplets. Russ. J. Phys. Chem. B 18(5):1341–1349. doi: 10.1134/ S1990793124701112.
- Frolov, S. M., A. N. Polenov, B. E. Gel’fand, and A. A. Borisov. 1986. Features of detonation in systems with arbitrary losses. Sov. J. Chem. Phys. 5(7):1641–1668.
Supplementary files
