Numerical simulation and experimental study of laser ignition of oxygen–hydrogen mixture in a model combustion chamber
- Authors: Rebrov S.G.1, Golubev V.A.1, Golikov A.N.1, Ganin I.A.2, Koshlakov V.V.1, Bloshenko A.V.3
-
Affiliations:
- SSC Keldysh Research Center
- Volga Region Branch of JSC NPO Energomash
- State Corporation for Space Activities “Roscosmos”
- Issue: Vol 17, No 4 (2024)
- Pages: 3-14
- Section: Articles
- URL: https://journal-vniispk.ru/2305-9117/article/view/284243
- DOI: https://doi.org/10.30826/CE24170401
- EDN: https://elibrary.ru/MOGQUJ
- ID: 284243
Cite item
Abstract
The article considers results of a study on determining optimal areas for laser ignition of an oxygen–hydrogen fuel mixture in a model combustion chamber by focusing laser radiation to initiate an optical breakdown spark in a selected zone. The results of numerical simulation of the nonstationary process of mixing the gaseous components — oxygen and hydrogen — are presented with the determination of the parameters of the resulting mixture in the volume of the model combustion chamber carried out in the LOGOS-Prepost software package. Three zones that are most preferable for laser ignition in the chamber are selected among the zones in which focusing of radiation is possible during laser ignition. These zones are located in the regions of flow recirculation exhibiting fuel mixture compositions close to stoichiometric and low flow velocities. Preferential use of the zones for laser ignition selected by the results of the numerical simulation was confirmed by test fires.
Full Text

About the authors
Sergei G. Rebrov
SSC Keldysh Research Center
Author for correspondence.
Email: rebrov_sergey@mail.ru
(b. 1958) — Doctor of Science in technology, head of department
Russian Federation, 8 Onezhskaya Str., Moscow 125438Viktor A. Golubev
SSC Keldysh Research Center
Email: golubev.va@mail.ru
(b. 1985) — Candidate of Science in technology, senior research scientist
Russian Federation, 8 Onezhskaya Str., Moscow 125438Andrei N. Golikov
SSC Keldysh Research Center
Email: andgolikov@mail.ru
(b. 1954) — Doctor of Science in technology, head of sector
Russian Federation, 8 Onezhskaya Str., Moscow 125438Igor A. Ganin
Volga Region Branch of JSC NPO Energomash
Email: pfenergo@samtel.ru
(b. 1965) — branch director — chief designer
Russian Federation, 29 Zavodskoe Shosse, Samara 443009Vladimir V. Koshlakov
SSC Keldysh Research Center
Email: kerc@elnet.msk.ru
(b. 1977) — Doctor of Science in technology, general director
Russian FederationAlexander V. Bloshenko
State Corporation for Space Activities “Roscosmos”
Email: info@roscosmos.ru
(b. 1984) — Candidate of Science in physics and mathematics, deputy general director for space complexes and science
Russian Federation, 42, b. 1, 2, Shchepkina Str., Moscow 129110References
- Choudhary, G., and H. Hansen. 1998. Human health perspective on environmental exposure to hydrazines: A review. Chemosphere 37(5):801–843. doi: 10.1016/s0045-6535(98)00088-5.
- Yepifanov, I. K., A. D. Kondrat’yev, and S. V. Doroshina 2009. Ekologicheskiy ushcherb pri avarii raket-nositeley na aktivnom uchastke poleta [Environmental damage in the event of a launch vehicle accident during the active phase of flight]. Natsional’nyye interesy: prioritety i bezopasnost’ [National Interests: Priorities and Security] 5(24):53–57.
- Zvonov, V. A. 1981. Toksichnost’ dvigateley vnutrennego sgoraniya [Toxicity of internal combustion engines]. Moscow: Mashinostoenie. 160 p.
- Ross, M., M. Mills, and D. Toohey . 2010. Potential climate impact of black carbon emitted by rockets. Geophys. Res. Lett. 37(24):L24810. 6 p. doi: 10.1029/ 2010GL044548.
- Ross, M., and J. A. Vedda . The policy and science of rocket emissions. Arlington, VA: Aerospace Corp., Center for Space Policy and Strategy, 2018. 12 p.
- Wintner, E. 2014. Laser ignition of engines: Technology, benefits and challenges. Latin America Optics and Photonics Conference. Paper LFP.1. doi: 10.1364/ LAOP.2014.LFP.1.
- Wintner, E., H. Kofler, A. K. Agarwal, M. A. Deneva, and M. N. Nenchev . 2014. Laser ignition of engines — a contribution to environmental protection and a challenge to laser technology. Annual J. Electronics 8:1–4.
- Hasegawa, K., K. Kusaka, A. Kumakawa, M. Sato, and M. Tadano. 2003. Laser ignition characteristics of GOx/GH and GOx/GCH propellants. AIAA Paper No. 2003-4906. doi: 10.2514/6.2003-4906.
- Rebrov, S. G., A. N. Golikov, and V. A. Golubev . 2012. Lazernoe vosplamenenie raketnykh topliv v model’noy kamere sgoraniya [Laser ignition of rocket fuels in a model combustion chamber]. Trudy MAI [Proceedings of the MAI] 53:10. Available at: http://trudymai.ru/published.php?ID=29491 (accessed November 25, 2024).
- Belov, E. A., A. N. Golikov, V. A. Golubev, D. I. Dubovik, N. G. Ivanov, O. G. Klyueva, P. S. Lyovochkin, S. G. Rebrov, and E. N. Romasenko 2013. Eksperimental’noe issledovanie vliyaniya raspolozheniya zony fokusirovki lazera na vosplamenenie topliva kislorod–kerosin [Experimental study of the effect of the location of the laser focusing zone on the ignition of oxygen–kerosene fuel]. Trudy NPO Energomash im. akademika V. P. Glushko (Mosk.) — Proceedings of NPO Energomash 30:120–134.
- Chvanov, V. K., I. A. Ganin, N. G. Ivanov, P. S. Lyovochkin, E. N. Romasenko, and B. A. Surkov . 2015. Eksperimental’noye issledovaniye lazernogo vosplameneniya topliva kislorod–kerosin v kamerakh ZHRD [Experimental study of laser ignition of oxygen–kerosene fuel in liquid propellant rocket engine chambers]. Trudy NPO Energomash imeni akademika V. P. Glushko [Proceedings of NPO Energomash] 32:113–133.
- Rebrov, S. G., A. N. Golikov, and V. A. Golubev . 2017. Lazernoe zazhiganie topliva kislorod–kerosin v raketnoy tekhnike: ot zapal’nykh ustroystv k marshevym raketnym dvigatelyam [Laser ignition of oxygen–kerosene fuel in rocket technology: From ignition devices to sustainer rocket engines]. Trudy MAI [Proceedings of MAI] 95:12. Available at: https://trudymai.ru/upload/iblock/030/Rebrov_Golubev_Golikov_rus.pdf?lang=ru&issue=95 (accessed November 25, 2024).
- Borner, M., C. Manfletti, J. Hardi, et al. 2018. Laser ignition of a multi-injector LOx/methane combustor. CEAS Space J. 10(2):273–286. doi: 10.1007/s12567-018-0196-6.
- Rebrov, S. G., V. A. Golubev, and A. N. Golikov . 2018. Lazernoye zazhiganiye kislorodno-uglevodorodnykh topliv v raketnykh dvigatelyakh [Laser ignition of oxygen–hydrocarbon fuels in rocket engines]. BMSTU J. Mechanical Engineering 7:77–91. doi: 10.18698/0536-1044-2018-7-77-91.
- Rebrov, S. G., V. A. Golubev, Y. P. Kosmachev, and V. P. Kosmacheva . 2019. Lazernoye zazhiganiye toplivazhidkiy kislorod – gazoobraznyy vodorod v krupnorazmernoy kamere sgoraniya [Laser ignition of liquid-oxygen – gaseous-hydrogen fuel in a large-scale combustion chamber]. BMSTU J. Mechanical Engineering 12:104–114. doi: 10.18698/0536-1044-2019-12-104-114.
- Shynkarenko, O., and D. Simone. 2020. Oxygen–methane torch ignition system for aerospace applications. Aerospace 7(114):1–10. doi: 10.3390/aerospace7080114.
- Andronov, A. A., V. A. Gurin, A. V. Marugin, et al. 2014. Laser ignition in internal-combustion engines: Sparkless initiation. Tech. Phys. Lett. 40(8):662–664. doi: 10.1134/S1063785014080021. EDN: UEXNNB.
- Richardson, S., M. McMillian, S. Woodruff, and D. McIntyre. 2004. Misfire, knock and NOx mapping of a laser spark ignited single cylinder lean burn natural gas engine. SAE Technical Paper 2004-01-1853. doi: 10.4271/2004-01-1853.
- Maillard, M., G. A. Hudebine, M. Orain, and P. Doublet. 2023. Ignition of a Safran’s helicopter engine with a compact nanosecond laser system. Turbomachinery Technical Conference and Exposition. Paper GT2023-103897. 8 p. doi: 10.1115/GT2023-103897.
- Patil, S. S., P. M. Patane, and M. R. Nandgaonkar . 2023. Laser ignition and flame propagation of methanol–air mixture in a constant volume combustion chamber. Energ. Source. Part A 45(4):11142–11154. doi: 10.1080/ 15567036.2023.2255156.
- Zhang, Wei, Hongwei Zang, Shuo Wang, and Junyan Chen. 2024. Non-resonant photochemical ignition of lean methane/air mixtures by femtosecond laser filamentation. Combust. Flame 266:113542. doi: 10.1016/ j.combustflame.2024.113542.
- Ostrovskaya, G. V., and A. N. Zaydel’ . 1973. Lazernaya iskra v gazakh [Laser spark in gases]. Phys. — Usp. 111(4):579–615.
- Khitrin, L. N. 1957. Fizika goreniya i vzryva [Physics of combustion and explosion]. Moscow: Publishing House of Moscow State University. 453 p.
- Lewis, B., and G. von Elbe. 1961. Combustion, flames and explosions of gases. New York, London. Academic Press Inc. 739 p.
- Raushenbakh, B. V., A. A. Belyy, I. V. Bespalov, et al. 1964. Fizicheskie osnovy rabochego protsessa v kamerakh sgoraniya vozdushno-reaktivnykh dvigateley [Physical basis of the working process in the combustion chambers of air-breathing engines]. Moscow: Mashinostroenie. 526 p.
- Lim, E. H., A. McIlroy, P. D. Ronney, and J. A. Syage . 1995. Detailed characterization of minimum ignition energies of combustible gases using laser ignition sources. 8th Symposium (International) on Transport Phenomena in Combustion. San Franscisco, CA. 176–184.
- Rebrov, S. G., V. A. Golubev, A. N. Golikov, and A. E. Morgunov . 2022. Issledovanie vliyaniya parametrov toplivnykh smesey kislorod–vodorod i kislorod–metan na vozmozhnost’ lazernogo zazhiganiya [Investigation of the influence of parameters of oxygen–hydrogen and oxygen–methane mixtures on the possibility of laser ignition]. Goren. Vzryv (Mosk.) — Combustion and Explosion 15(4):10–18. doi: 10.30826/CE22150402.
Supplementary files
