Calculation of characteristics of a fire-extinguishing aerosol generator and high-pressure spray for extinguishing oil and gas fountains
- Authors: Kozlova E.V.1, Kartashev Y.I.1, Kopylov S.N.2,3, Rogozhina O.I.2
-
Affiliations:
- Russian Research Center Applied Chemistry (GIPH)
- All Russian Research Institute for Fire Protection EMERCOM of Russia
- National Research Nuclear University MEPhI
- Issue: Vol 17, No 4 (2024)
- Pages: 46-53
- Section: Articles
- URL: https://journal-vniispk.ru/2305-9117/article/view/284418
- DOI: https://doi.org/10.30826/CE24170405
- EDN: https://elibrary.ru/WFFTWS
- ID: 284418
Cite item
Abstract
Parameters of the jet of fire-extinguishing aerosol emanating from a high-pressure generator have been studied. The calculation of the exhaust nozzle of the generator using a fast-burning aerosol-forming composition has been performed. The characteristics of the formed supersonic flow with condensation of aerosol particles in it have been calculated and experimentally determined. It is shown that the aerosol jet formed by the high-pressure generator is capable of rising to three times the height than that attained using a device with a slow-burning aerosol-forming composition. This is due to the fundamentally different dynamics of the formed flow and the smaller size of aerosol particles condensing downstream the generator nozzle. Full-scale experiments have shown that the supply of fire-extinguishing aerosol to a height of about 9 m in conjunction with the flow of burning oil or gas provides an extremely short extinguishing time of the fountain of 3–5 s from the moment the generators start working. Extinguishing is achieved when filling the volume of the torch with a fire-extinguishing aerosol and reaching its minimum extinguishing concentration.
Keywords
Full Text

About the authors
Elena V. Kozlova
Russian Research Center Applied Chemistry (GIPH)
Author for correspondence.
Email: giph@giph.su
(b. 1953) — Candidate of Science in technology, Candidate of Science in economics, general director
Russian Federation, 26A Krylenko Str., St. Petersburg 193232Yuriy I. Kartashev
Russian Research Center Applied Chemistry (GIPH)
Email: y.kartashov@giph.su
(b. 1953) — Candidate of Science in technology, deputy general director
Russian Federation, 26A Krylenko Str., St. Petersburg 193232Sergey N. Kopylov
All Russian Research Institute for Fire Protection EMERCOM of Russia; National Research Nuclear University MEPhI
Email: firetest@mail.ru
(b. 1971) — Doctor of Science in technology, chief research scientist, All Russian Research Institute for Fire Protection, All Russian Research Institute for Fire Protection EMERCOM of Russia; associate professor, National Research Nuclear University MEPhI
Russian Federation, 12 m/r VNIIPO, Balashikha, Moscow Region 143903; 31 Kashirskoe Shosse, Moscow 115409Olga I. Rogozhina
All Russian Research Institute for Fire Protection EMERCOM of Russia
Email: rogozhina.ole4ka@yandex.ru
(b. 1987) — research scientist
Russian Federation, 12 m/r VNIIPO, Balashikha, Moscow Region 143903References
- Dolganov, Yu. D., V. V. Sobolevskiy, and V. M. Simonov. 1991. Otkrytye fontany i bor’ba s nimi. Spravochnik [Open fountains and the fight against them. Handbook]. Moscow: Nedra. 189 p.
- Nolan, D. P. 2019. Handbook of fire and explosion protection engineering principles for oil, gas, chemical, and related facilities. London – New York: Academic Press. 426 p.
- Grace, R. D. 2003. Blowout and well control handbook. London – New York: Academic Press. 469 p.
- Tuttle, S. G., B. T. Ficher, D. A. Kessler, et al. 2021. Petroleum wellhead burning: A review of the basic science for burn efficiency prediction. Fuel 303:121279.
- Ivannikov, V. P., and P. P. Klyus. 1987. Spravochnik rukovoditelya tusheniya pozhara [Firefighter’s handbook]. Moscow: Stroyizdat. 228 p.
- Barakovskikh, S. A., L. U. Chabaev, R. A. Bakeev, et al. 2016. Analiz sposobov likvidatsii goryashchikh gazovykh fontanov na skvazhinakh Zapadnoy Sibiri [Analysis of methods for elimination of burning gas blowouts in wells of West Siberia]. Izvestiya vysshikh uchebnykh zavedeniy. Neft’ i gaz [Oil and Gas Studies] 5:124–129.
- Kopylov, S. N., O. I. Rogozhina, E. V. Kozlova, and Yu. I. Kartashov. 2023. Tushenie neftyanykh i gazovykh fontanov vysokonapornymi struyami ognetushashchego aerozolya [Extinguishing of oil and gas blowouts by high-pressure jets of the fire extinguishing aerosol]. Bezopasnost’ truda v promyshlennosti [Occupational Safety in Industry] 9:65–73.
- Povzik, Ya. S. 2001. Pozharnaya taktika [Fire tactics]. Moscow: ZAO “Spetstekhnika>>. 414 p.
- Evans, D., and D. Pfenning. 1985. Water sprays suppress gas-well blowout fires. Oil Gas J. 83:80–86.
- Kayzer, Yu. F., A. V. Lysyannikov, R. B. Zhelukevich, et al. 2014. Avtomobil’ gazo-vodyanogo tusheniya [Car gas–water extinguishing]. Sovremennye problemy nauki i obrazovaniya [Modern Problems of Science and Education] 5:203–208.
- Zabegaev, V. I. 12.04.2017. Sposob vikhrevogo poroshkovogo tusheniya goryashchikh fontanov na gazovykh, neftyanykh i gazoneftyanykh skvazhinakh [Method of vortex powder extinguishing of burning fountains at gas, oil, and gas–oil wells]. Patent RF No. RU 2616039 S1.
- Zakhmatov, V. D., M. V. Silnikov, and M. V. Chernyshov. 2016. Overview of impulse fire-extinguishing system applications. J. Industrial Pollution Control 32(2):490–499.
- Agafonov, V. V., D. V. Bukhtoyarov, V. A. Grishakina, A. V. Kazakov, S. N. Kopylov, and A. D. Golubev. 2019. Obosnovanie sposobov aerozol’nogo pozharotusheniya v vysotnykh pomeshcheniyah i sooruzheniyakh [Justification of aerosol fire extinguishing methods in high-rise buildings and structures]. Pozharnaya bezopasnost’ [Fire Safety] 4:21–31.
- Smirnov, P. G. 2023. Raschet ravnovesnogo sostava produktov sgoraniya toplivnykh kompozitsiy metodom minimizatsii termodinamicheskogo potentsiala [Calculating equilibrium composition of fuel compositions combustion products by minimising the thermodynamic potential]. Aerokosmicheskaya tekhnika i tekhnologii [Aerospace Engineering and Technology] 1(1):160–172.
- Zudin, Ju. B., D. S. Urtenov, and V. S. Ustinov. 2019. Kineticheskiy analiz intensivnoy kondensatsii (dozvukovoy i sverkhzvukovoy rezhimy) [Kinetic analysis of intense condensation (subsonic and supersonic regimes)]. Izvestiya RAN. Energetika [Proceedings of the Russian Academy of Sciences. Power Engineering] 4:75–97.
- Shabliy, L. S., and A. V. Krivtsov. 2014. Raschet sverkhzvukovogo techeniya dvukhfaznoy sredy v ANSYS Fluent [Calculation of supersonic flow of two-phase medium in ANSYS Fluent]. Samara: NIU SGAU im. S. P. Koroleva. 6 p.
- Kraposhin, M. V. 2016. Matematicheskoe modelirovanie szhimaemykh techeniy s ispol’zovaniem gibridnogo metoda approksimatsii konvektivnykh potokov [Mathematical modeling of compressible flows using a hybrid method of convective flow approximation]. Moscow: Institute for System Programming of the Russian Academy of Sciences. PhD Diss. 182 p.
- Lee, J. H. W., and V. H. Chu. 2003. Turbulent jets and plumes — a Lagrangian approach. Kluwer Academic Publs. 390 p.
- Gamaltdinov, I. K., S. R. Kildibaeva, and R. Z. Akhmadeeva. 2013. Raschet teplofizicheskikh i kineticheskikh parametrov zatoplennoy strui [Calculation of thermal and kinetic parameters of submerged jet]. Fundamental’nye issledovaniya [Fundamental Research]. 11:1323–1327.
Supplementary files
