TNT equivalent of underwater explosion of the mixtures based on the explosives with positive oxygen balance
- Autores: Makhov M.N.1
-
Afiliações:
- N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Edição: Volume 17, Nº 4 (2024)
- Páginas: 124-129
- Seção: Articles
- URL: https://journal-vniispk.ru/2305-9117/article/view/284523
- DOI: https://doi.org/10.30826/CE24170413
- EDN: https://elibrary.ru/DSIGTY
- ID: 284523
Citar
Resumo
The possibilities of increasing the shock wave energy of an underwater explosion by introducing the explosive with a positive oxygen balance into the composition of the energetic material are analyzed. For the calculations, relatively new compounds were chosen as explosive oxidizers: 3,6-dinitro-1,4-bis(trinitromethyl)-1,4-dihydropyrazolo[4,3-c]pyrazole; 4,4,5,5-tetranitro-2,2-bis(trinitromethyl)-2Н,2Н-3,3-bipyrazole; and2-dinitromethyl-5-nitrotetrazole. The function of explosive fuel was performed by the well-known powerful substances HMX and CL-20. The calculations have shown that compositions containing these explosive oxidizers should have high values of the TNT equivalent in terms of shock wave energy and the most noticeable increase in the TNT equivalent due to the use of these explosive oxidizers should be expected in the case of aluminized compositions.
Palavras-chave
Texto integral

Sobre autores
Michael Makhov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: mmn13makhov@yandex.ru
(b. 1946) — Candidate of Science in chemistry, leading research scientist
Rússia, 4 Kosygin Str., Moscow 119991Bibliografia
- Cole, R. H. 1980. Underwater explosions. Ann Arbor, MI: University Microfilms International. 437 p.
- Makhov, M. N. 2022. Empiricheskie sootnosheniya dlya otsenki trotilovogo ekvivalenta podvodnogo vzryva [Empirical equations for evaluating TNT-equivalent of underwater explosion]. Goren. Vzryv (Mosk.) — Combustion and Explosion 15(4):105–111. doi: 10.30826/СЕ22150411.
- Makhov, M. N., and V. I. Arkhipov. 1989. Velocity of shell dispersion. Combust. Explo. Shock Waves 25(3):343–345.
- Makhov, M. N. 2002. The effect of charge density on the explosion heat of high explosives. 33rd Annual Conference (International) of ICT Proceedings. Karlsruhe. Paper 73. 13 p.
- Makhov, M. N. 2005. Metod otsenki teploty vzryva alyuminizirovannykh VV [Method for evaluating the heat of explosion of aluminized HE]. Conference (International) 7th Kharitonov Topical Scientific Readings Proceedings. Sarov: RFNC-VNIIF. 53–58.
- Pepekin, V. I. 2007. Limiting detonation velocities and limiting propelling powers of organic explosives. Dokl. Phys. Chem. 414(2):159–161. doi: 10.1134/ S0012501607060103.
- Zhukov, B. P., ed. 2000. Energeticheskie kondensirovannye sistemy [Energy condensed systems]. 3rd ed. Moscow: Yanus-K. 596 p.
- Sympson, R. L., P. A. Urtiew, D. L. Ornellas, G. L. Moody, K. J. Scribner, and D. M. Hoffman. 1997. CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propell. Explos. Pyrot. 22(5):249–255.
- Inozemtsev, Ya. O., A. V. Inozemtsev, M. N. Makhov, A. B. Vorobiev, and Yu. N. Matyushin. 2021. Calculation of detonation parameters of TKX-50 explosives. Russ. J. Phys. Chem. B 15(6):1005–1007. doi: 10.1134/ S1990793121060178.
- Dalinger, I. L., K. Yu. Suponitsky, T. K. Shkineva, D. B. Lempert, and A. B. Sheremetev. 2018. Bipyrazole bearing ten nitro groups — a novel highly dense oxidizer for forward-looking rocket propulsions. J. Mater. Chem. A 6(30):14780–14786. doi: 10.1039/C8TA05179H.
- Mohammad, K., V. Thaltiri, N. Kommu, and A. A. Vargeese. 2020. Octanitropyrazolopyrazole: A gem-trinitromethyl based green high-density energetic oxidizer. Chem. Commun. 56:12945–12948. doi: 10.1039/ D0CC05704E.
- Zyuzin, I. N., I. Yu. Gudkova, and D. A. Lempert. 2022. Energy capabilities of some oxidizers with two N-trinitromethylazole fragments in one molecule as components of composite energy systems. Russ. J. Phys. Chem. B 16(5):902–911. doi: 10.1134/ S1990793122060240.
- Zhao, X. X., S. H. Li, Y. Wang, Y. C. Li, F. Q. Zhao, and S. P. Pang. 2016. Design and synthesis of energetic materials toward high density and positive oxygen balance byN-dinitromethyl functionalization of nitroazoles. J. Mater. Chem. A 4(15):5495–5504. doi: 10.1039/ C6TA01501H.
- Zyuzin, I. N., I. Yu. Gudkova, and D. A. Lempert. 2020. Energy capabilities of N-dinitro and N-trinitro derivatives of nitroazoles as composite solid propellant components. Russ. J. Phys. Chem. B 14(5):804–813. doi: 10.1134/ S1990793120050140.
- Makhov, M. N. 2020. Determination of the heat of an explosion of aluminized blasting сompounds. Russ. J. Phys. Chem. B 14(5):821–828. doi: 10.1134/ S1990793120050085.
Arquivos suplementares
