Effect of reactor volume on autothermal natural gas conversion and allothermal gasification of organic waste by ultrasuperheated steam

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The pulsed detonation gun (PDG) technology was applied for autothermal high-temperature conversion of natural gas and allothermal oxygen-free gasification of liquid/solid organic wastes with ultrasuperheated steam (USS) at atmospheric pressure using two flow reactors of significantly different volumes: 100 and 40 l. The PDG operated at a frequency f of 1 Hz on a mixture of natural gas and oxygen. Waste machine oil and sawdust with a moisture content of 10 to 30 %(wt.) were used as liquid and solid organic wastes. It was expected that a decrease in the volume of the flow reactor from 100 to 40 l, on the one hand, should not affect the natural gas conversion and, on the other hand, could lead to an increase in the gasification temperature in the flow reactor and, accordingly, to an increase in the quality of the product syngas (H2 + CO). As expected, complete conversion of natural gas to syngas was achieved in the PDG with H2/CO and CO2/CO ratios of 1.25 and 0.25 which were independent of the reactor volume. Liquid and solid wastes were converted in the flow reactors into gas containing H2, CO, CO2, and CH4. The steady-state values of the H2/CO and CO2/CO ratios in the syngas obtained from waste machine oil were 0.8 and 0.5 in the 100-liter reactor and 0.9 and 0.2 in the 40-liter reactor, respectively, which indicates an expected increase in the syngas quality. At the same time, the maximum mass flow rate of feedstock in the 40-liter reactor increased by a factor of more than 4 compared to the 100-liter reactor. The steady-state values of the H2/CO and CO2/CO ratios in the syngas obtained from a batch of sawdust of a fixed mass (2 kg) were 0.5 and 0.8 for both reactors and the gasification time in both reactors was about 5–7 min. It has been shown that the measured volume fractions of H2, CO, and CO2 in the syngas produced both by autothermal high-temperature conversion of natural gas and by allothermal oxygen-free gasification of liquid/solid organic wastes in the USS medium at atmospheric pressure and f=1 Hz are almost independent of the feedstock and reactor volume which is associated with high values of the local instantaneous gasification temperature.

About the authors

Sergey M. Frolov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: smfrol@chph.ras.ru

Doctor of Science in physics and mathematics, head of department, head of laboratory; professor

Russian Federation, Moscow; Moscow

Victor A. Smetanuk

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: smetanuk@chph.ras.ru

Candidate of Science in physics and mathematics, senior research scientist

Russian Federation, Moscow

Ilyas A. Sadykov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: ilsadykov@mail.ru

research scientist

Russian Federation, Moscow

Anton S. Silantiev

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: silantevu@mail.ru

research engineer

Russian Federation, Moscow

Igor O. Shamshin

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: igor_shamshin@mail.ru

Candidate of Science in physics and mathematics, leading research scientist

Russian Federation, Moscow

Victor S. Aksenov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: v.aksenov@mail.ru

Candidate of Science in physics and mathematics, senior research scientist; associate professor

Russian Federation, Moscow; Moscow

Konstantin A. Avdeev

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: kaavdeev@mail.ru

Candidate of Science in technology, leading research scientist

Russian Federation, Moscow

Fedor S. Frolov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Author for correspondence.
Email: f.frolov@chph.ru

Candidate of Science in physics and mathematics, senior research scientist

Russian Federation, Moscow

References

  1. Hu, J., and D. Shekhawat. 2022. Direct natural gas conversion to value-added chemicals. Boca Raton, FL: CRC Press. 454 p.
  2. Base, P. 2010. Biomass gasification and pyrolysis. Practical design. Burlington, ON: Academic Press. 376 p.
  3. Bain, R. L., and K. Broer. 2011. Gasification. Thermochemical processing of biomass: Conversion into fuels, chemicals and power. Ed. R. C. Brown. 1st ed. John Wiley & Sons. 47–77.
  4. Frolov, S. M. 2021. Organic waste gasification: A selective review. Fuels 2:556–651. doi: 10.3390/fuels2040033.
  5. Frolov, S. M. 2021. Gazifikatsiya organicheskikh otkhodov ul’traperegretym vodyanym parom i dioksidom ugleroda [Gasification of organic wastes by ultra-superheated steam and carbon dioxide]. Goren. Vzryv (Mosk.) — Combustion and Explosion 14(3):74–97. doi: 10.30826/CE21140308.
  6. Portofino, S., A. Donatelli, P. Iovane, C. Innella, R. Civita, M. Martino, D. A. Matera, A. Russo, G. Cornacchia, and S. Galvagno. 2013. Steam gasification of waste tyre: Influence of process temperature on yield and product composition. Waste Manage.33:672–678.
  7. Wilk, V., and H. Hofbauer. 2013. Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier. Fuel 107:787–799.
  8. Pilon, G., and J.-M. Lavoie. 2013. Pyrolysis of switchgrass (Panicum virgatum L.) at low temperatures within N2 and CO2 environments: Product yield study. ACS Sustain. Chem. Eng. 1:198–204.
  9. Sadhwani, N., S. Adhikari, and M. R. Eden. 2016. Biomass gasification using carbon dioxide: Effect of tem-
  10. perature, CO2/C ratio, and the study of reactions influencing the process. Ind. Eng. Chem. Res. 55:2883–2891.
  11. Galvagno, S., G. Casciaro, S. Casu, M. Martino, C. Mingazzini, A. Russo, and S. Portofino. Steam gasification of tire waste, poplar, and refuse-derived fuel: A comparative analysis. Waste Manage. 29:678–689.
  12. Soni, C. G., A. K. Dalai, T. Pugsley, and T. Fonstad. 2011. Steam gasification of meat and bone meal in a two-stage fixed-bed reactor system. Asia-Pac. J. Chem. Eng. 6:71– 77.
  13. Eshun, J., L. Wang, E. Ansah, A. Shahbazi, K. Schimmel, V. Kabadi, and S. Aravamudhan. 2017. Characterization of the physicochemical and structural evolution of biomass particles during combined pyrolysis and CO2 gasification. J. Energy Inst. 92:32–93.
  14. Minkova, V., S. P. Marinov, R. Zanzi, E. Bjornbom, T. Budinova, M. Stefanova, and L. Lakov. 2000. Thermochemical treatment of biomass in a flow of steam or in a mixture of steam and carbon dioxide. Fuel Process. Technol. 61:45–52.
  15. Galvagno, S., S. Casu, G. Casciaro, M. Martino, A. Russo, and S. Portofino. 2006. Steam gasification of refuse- derived fuel (RDF): Influence of process temperature on yield and product composition. Energ. Fuel. 20:2284– 2288.
  16. Umeki, K., K. Yamamoto, T. Namioka, and K. Yoshikawa. 2010. High temperature steam-only gasification of woody biomass. Appl. Energ. 87:791–798.
  17. Guizani, C., F. J. Escudero Sanz, and S. Salvador. 2014. Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties. Fuel 116:310–320.
  18. Hlina, M., M. Hrabovsky, T. Kavka, and M. Konrad. 2014. Production of high quality syngas from argon/water plasma gasification of biomass and waste. Waste Manage. 34:63–66.
  19. Billaud, J., S. Valin, M. Peyrot, and S. Salvador. 2016. Influence of H2O, CO2 and O2 addition on biomass gasification in entrained flow reactor conditions: Experiments and modelling. Fuel 166:166–178.
  20. Agon, N., M. Hrabovsky, O. Chumak, et al. 2016. Plasma gasification or refuse derived fuel in a single-stage system using different gasifying agents. Waste Manage. 47:246–255.
  21. Hrabovsky, M., M. Hlina, V. Kopecky, A. Maslani, O. Zivny, P. Krenek, and O. Hurba. 2017. Steam plasma treatment of organic substances for hydrogen and syngas production. Plasma Chem. Plasma P. 37:739–762.
  22. Wang, M., M. Mao, M. Zhang, G. Wen, Q. Yang, B. Su, and Q. Ren. 2019. Highly efficient treatment of textile dyeing sludge by CO2 thermal plasma gasification. Waste Manage. 90:29–36.
  23. Shie, J. L., F. J. Tsou, K. L. Lin, and C.Y. Chang. 2010. Bioenergy and products from thermal pyrolysis of rice straw using plasma torch. Bioresource Technol. 101:761–768.
  24. Hrabovsky, M. 2011. Plasma aided gasification of biomass, organic waste and plastics. 30th Conference (International) on Phenomena in Ionized Gas Proceedings. Belfast, Northern Ireland. 4 p.
  25. Vecten, S., M. Wilkinson, N. Bimbo, R. Dawson, and B. M. J. Herbert. 2021. Hydrogen-rich syngas production from biomass in a steam microwave-induced plasma gasification reactor. Bioresource Technol. 337:125324.
  26. Bebelin, I. N., A. G. Volkov, A. N. Gryaznov, and S. P. Malyshenko. 1997. Development and research of an experimental hydrogen–oxygen steam generator with a capacity of 10 MW(t). Therm. Eng. 8:48–52.
  27. Lewis, F. M. 2007. Generation of an ultra-superheated steam composition and gasification therewith. U.S. Patent US20030233788A1.
  28. Sariev, V. N., V. A. Veretennikov, and V. V. Troyachenko. 28.03.2018. Sistema kompleksnoy bezotkhodnoy pererabotki tverdykh bytovykh i promyshlennykh otkhodov [System of complex recycling of solid domestic and industrial waste]. Patent of Russian Federation No. 2648737. Priority 28.03.2016.
  29. Pierce, T. H., E. M. Afify, and R. T. Zickefoose. 1979. Detonation-induced coal gasification. Raleigh, NC: Department of Mechanical and Aerospace Engineering, North Carolina State University. Final Report No. DOE/ET/10451-T1.
  30. Pierce, T. H. 1987. Detonation-induced coal gasification. Int. J. Energ. Res. 11(2):203–231.
  31. Hunter, L. G. 30.09.1997. Pulse detonation device for coal gasification. U.S. Patent 5,672,184.
  32. Frolov, S. M., V. A. Smetanyuk, I. A. Sadykov, A. S. Silantiev, I. O. Shamshin, V. S. Aksenov, K. A. Avdeev, and F. S. Frolov. 2002. Natural gas conversion and liquid/solid organic waste gasification by ultra-superheated steam. Energies 15:3616. doi: 10.3390/en15103616.
  33. Frolov, S. M., V. A. Smetanyuk, K. A. Avdeev, and S. A. Nabatnikov. 24.04.2019. Sposob polucheniya sil’no peregretogo para i ustroystvo detonatsionnogo parogeneratora (varianty) [Method for obtaining highly overheated steam and detonation steam generator device (options)]. Patent of Russian Federation No. 2686138. Priority 26.02.2018.
  34. Frolov, S. M., V. A. Smetanyuk, and S. A. Nabatnikov. 01.04.2019. Sposob gazifikatsii uglya v sil’no peregretom vodyanom pare i ustroystvo dlya ego osushchestvleniya [Method of gasification of coal in a highly overheated water vapor and device for its implementation]. Patent of Russian Federation No. 2683751. (WO2019/226074 A1 dated 28.11.2019.)
  35. Frolov, S. M., S. A. Nabatnikov, K. V. Diesperov, and E. R. Achildiev. 22.12.2020. Sposob obezzarazhivaniya letuchey zoly, obrazuyushcheysya pri szhiganii otkhodov, i ustroystvo dlya ego osushchestvleniya [Method for decontamination of a fly ash formed during burning of wastes and a device for its implementation]. Patent of Russian Federation No. 2739241. Priority 11.06.2020.
  36. Frolov, S. M., V. A. Smetanyuk, I. O. Shamshin, A. S. Koval’, F. S. Frolov, and S. A. Nabatnikov. 2019. Poluchenie sil’no peregretogo vodyanogo para s pomoshch’yu tsik- licheskoy detonatsii troynoy gazovoy smesi “propan – kislorod – vodyanoy par” [Generation of highly superheated steam by pulsed detonation of the ternary gas “propane – oxygen – steam” mixture]. Goren. Vzryv (Mosk.) — Combustion and Explosion 12(4):95–103. doi: 10.30826/CE19120410.
  37. Frolov, S. M., V. A. Smetanyuk, and S. S. Sergeev. 2020. Reactor for waste gasification with highly superheated steam. Dokl. Phys. Chem. 495(2):191–195. doi: 10.1134/ S0012501620120039.
  38. Frolov, S. M., V. A. Smetanyuk, I. O. Shamshin, I. A. Sadykov, A. S. Koval’, and F. S. Frolov. 2021. Production of highly superheated steam by cyclic detonations of propane and methane–steam mixtures with oxygen for waste gasification. Appl. Therm. Eng. 183(1):116195. doi: 10.1016/j.applthermaleng.2020.116195.
  39. Frolov, S. M., V. A. Smetanyuk, I. A. Sadykov, A. S. Silantiev, V. S. Aksenov, I. O. Shamshin, K. A. Avdeev, and F. S. Frolov. 2022. Avtotermicheskaya konversiya prirodnogo gaza i allotermicheskaya gazifikatsiya zhidkikh i tverdykh organicheskikh otkhodov ul’traperegretym vodyanym parom [Autothermal natural gas conversion and allothermal gasification of liquid and solid organic wastes by ultrasuperheated steam]. Goren. Vzryv (Mosk.) — Combustion and Explosion 15(2):75–87. doi: 10.30826/CE22150207.
  40. Frolov, S. M., V. Ya. Basevich, V. S. Aksenov, and S. A. Polikhov. 2005. Optimization study of spray detonation initiation by electric discharge. Shock Waves 14(3):175–186. doi: 10.1007/s00193-005-0263-8.
  41. Ferreira, S., E. Monteiro, P. Brito, and C. 2019. A holistic review on biomass gasification modified equilibrium models. Energies 12:160.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».