Collective effects in the secondary fragments formation as a result of microexplosive fragmentation of composite fuel

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Microexplosive fragmentation is a key phenomenon on which modern methods of secondary atomization of composite fuels are based in industry. The implementation of the corresponding processes makes it possible to reduce the size of secondary droplets by a multiple (from 10–15 to 100–200 times) relative to the initial values of the sizes of the parent droplets formed during spray disintegration. This study presents the results of studying the collective effects in the formation of secondary fragments as a result of microexplosive fragmentation of composite fuels. The characteristics of secondary fragments during microexplosive fragmentation of a group of three droplets of composite fuels are analyzed. Two fuel compositions were used: 90% diesel / 10% water and 10% diesel / 90% water. Using the Shadow Photography method, the typical sizes of secondary fragments, which are formed during the fragmentation of each of the three droplets in a group, are determined. The limiting distances (from 8 to 10 radii) between droplets are established, at which the integral characteristics of the fragmentation of a group of droplets satisfactorily correspond to the similar characteristics of the disintegration of single droplets. At smaller distances between droplets, significant differences in the characteristics of secondary droplets formed as a result of microexplosive fragmentation of composite fuels were registered.

Авторлар туралы

Dmitrii Antonov

School of Energy & Power Engineering, National Research Tomsk Polytechnic University

Хат алмасуға жауапты Автор.
Email: antonovdv132@gmail.com

(b. 1996) — PhD student, junior research scientist

Ресей, 30 Lenin Av., Tomsk 634050

Roman Fedorenko

School of Energy & Power Engineering, National Research Tomsk Polytechnic University

Email: vfedrm@gmail.com

(b. 1997) — PhD student, junior research scientist

Ресей, 30 Lenin Av., Tomsk 634050

Pavel Strizhak

School of Energy & Power Engineering, National Research Tomsk Polytechnic University

Email: pavelspa@tpu.ru

(b. 1985) — Doctor of Science in physics and mathematics, professor

Ресей, 30 Lenin Av., Tomsk 634050

Әдебиет тізімі

  1. Alkhedhair, A., I. Jahn, H. Gurgenci, Z. Guan, and S. He. 2016. Parametric study on spray cooling system for optimising nozzle design with pre-cooling application in natural draft dry cooling towers. Int. J. Therm. Sci. 104:448–460. doi: 10.1016/j.ijthermalsci.2016.02.004.
  2. Sazhin, S. S. 2017. Modelling of fuel droplet heating and evaporation: Recent results and unsolved problems. Fuel 196:69–101. doi: 10.1016/j.fuel.2017.01.048.
  3. Ayhan, V., and S. Tunca. 2018. Experimental investigation on using emulsified fuels with different biofuel additives in a DI diesel engine for performance and emissions. Appl. Therm. Eng. 129:841–854. doi: 10.1016/j.applthermaleng.2017.10.106.
  4. Tonini, S., M. Gavaises, and A. Theodorakakos. 2009. The role of droplet fragmentation in high-pressure evaporating diesel sprays. Int. J. Therm. Sci. 48:554–572. doi: 10.1016/j.ijthermalsci.2008.03.020.
  5. Fujimoto, H., A. Y. Tong, and H. Takuda. 2008. Interaction phenomena of two water droplets successively impacting onto a solid surface. Int. J. Therm. Sci. 47:229–236. doi: 10.1016/j.ijthermalsci.2007.02.006.
  6. Tarlet, D., J. Bellettre, M. Tazerout, and C. Rahmouni. 2009. Prediction of micro-explosion delay of emulsified fuel droplets. Int. J. Therm. Sci. 48:449–460. doi: 10.1016/j.ijthermalsci.2008.05.005.
  7. Tarlet, D., E. Mura, C. Josset, J. Bellettre, C. Allouis, and P. Massoli. 2014. Distribution of thermal energy of child-droplets issued from an optimal micro-explosion. Int. J. Heat Mass Tran. 77:1043–1054. doi: 10.1016/j.ijheatmasstransfer.2014.06.054.
  8. Tarlet, D., C. Allouis, and J. Bellettre. 2016. The balance between surface and kinetic energies within an optimal micro-explosion. Int. J. Therm. Sci. 107:179–183. doi: 10.1016/j.ijthermalsci.2016.04.008.
  9. Volkov, R. S., and P. A. Strizhak. 2018. Research of temperature fields and convection velocities in evaporating water droplets using Planar Laser-Induced Fluorescence and Particle Image Velocimetry. Exp. Therm. Fluid Sci. 97:392–407. doi: 10.1016/j.expthermflusci.2018.05.007.
  10. Ithnin, A. M., H. Noge, H. A. Kadir, and W. Jazair. 2014. An overview of utilizing water-in-diesel emulsion fuel in diesel engine and its potential research study. J. Energy Inst. 87:273–288. doi: 10.1016/j.joei.2014.04.002.
  11. Yoon, S., S. Lee, H. Kwon, J. Lee, and S. Park. 2018. Effects of the swirl ratio and injector hole number on the combustion and emission characteristics of a light duty diesel engine. Appl. Therm. Eng. 142:68–78. doi: 10.1016/j.applthermaleng.2018.06.076.
  12. Mura, E., C. Josset, K. Loubar, G. Huchet, and J. Bellettre. 2010. Effect of dispersed water droplet size in microexplosion phenomenon for water in oil emulsion. Atomization Spray. 20:791–799. doi: 10.1615/AtomizSpr.v20.i9.40.
  13. Khan, M. Y., Z. A. Abdul Karim, A. R. A. Aziz, M. R. Heikal, and C. Crua. 2017. Puffing and microexplosion behavior of water in pure diesel emulsion droplets during leidenfrost effect. Combust. Sci. Technol. 189:1186–1197. doi: 10.1080/00102202.2016.1275593.
  14. Antonov, D., M. Piskunov, P. Strizhak, D. Tarlet, and J. Bellettre. 2020. Dispersed phase structure and micro-explosion behavior under different schemes of water-fuel droplets heating. Fuel 259:116241. doi: 10.1016/ j.fuel.2019.116241.
  15. Avulapati, M. M., L. C. Ganippa, J. Xia, and A. Megaritis. 2016. Puffing and micro-explosion of diesel–biodiesel–ethanol blends. Fuel 166:59–66. doi: 10.1016/ j.fuel.2015.10.107.
  16. Rao, D. C. K., S. Syam, S. Karmakar, and R. Joarder. 2017. Experimental investigations on nucleation, bubble growth, and micro-explosion characteristics during the combustion of ethanol / Jet A-1 fuel droplets. Exp. Therm. Fluid Sci. 89:284–294. doi: 10.1016/j.expthermflusci. 2017.08.025.
  17. Ojha, P. K., R. Maji, and S. Karmakar. 2018. Effect of crystallinity on droplet regression and disruptive burning characteristics of nanofuel droplets containing amorphous and crystalline boron nanoparticles. Combust. Flame. 188:412–427. doi: 10.1016/j.combustflame.2017.10.005.
  18. Avulapati, M. M., T. Megaritis, J. Xia, and L. Ganippa. 2019. Experimental understanding on the dynamics of micro-explosion and puffing in ternary emulsion droplets. Fuel 239:1284–1292. doi: 10.1016/j.fuel.2018.11.112.
  19. Antonov, D. V., G. V. Kuznetsov, and P. A. Strizhak. 2019. Comparison of the characteristics of micro-explosion and ignition of two-fluid water-based droplets, emulsions and suspensions, moving in the high-temperature oxidizer medium. Acta Astronaut. 160:258–269. doi: 10.1016/j.actaastro.2019.04.048.
  20. Antonov, D. V., M. V. Piskunov, and P. A. Strizhak. 2019. Breakup and explosion of droplets of two immiscible fluids and emulsions. Int. J. Therm. Sci. 142:30–41. doi: 10.1016/j.ijthermalsci.2019.04.011.
  21. Antonov, D. V. R. S. Volkov, R. M. Fedorenko, P. A. Strizhak, G. Castanet, and S. S. Sazhin. 2021. Temperature measurements in a string of three closely spaced droplets before the start of puffing/micro-explosion: Experimental results and modelling. Int. J. Heat Mass Tran. 181:121837. doi: 10.1016/j.ijheatmasstransfer. 2021.121837.
  22. Antonov, D. V., R. M. Fedorenko, and P. A. Strizhak. 2019. Child droplets produced by micro-explosion and puffing of two-component droplets. Appl. Therm. Eng. 164:114501. doi: 10.1016/j.applthermaleng.2019.114501.
  23. Antonov, D. V., and P. A. Strizhak. 2020. Intensification of vaporization and secondary atomization of droplets of fire-extinguishing liquid composition. Tech. Phys. Lett. 46:122–125. doi: 10.1134/S1063785020020029.
  24. Yaws, L. C. 2003. Yaws’ handbook of thermodynamic and physical properties of chemical compounds. Norwich, NY: Knovel.
  25. Antonov, D., J. Bellettre, D. Tarlet, P. Massoli, O. Vysokomornaya, and M. Piskunov. 2018. Impact of holder materials on the heating and explosive breakup of two-component droplets. Energies 11:3307. doi: 10.3390/en11123307.
  26. Voytkov, I., R. Volkov, and P. Strizhak. 2017. Reducing the flue gases temperature by individual droplets, aerosol, and large water batches. Exp. Therm. Fluid Sci. 88:301–316. doi: 10.1016/j.expthermflusci.2017.06.009.
  27. Antonov, D. V, R. M. Fedorenko, and P. A. Strizhak. 2020. Micro-explosion and puffing of a group of two-component droplets. Appl. Therm. Eng. 181:116023. doi: 10.1016/j.applthermaleng.2020.116023.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».