Modeling of cellular detonation wave structure in stoichiometric dual-fuel mixture of synthesis-gas with oxidizer
- Authors: Trotsyuk A.V.1, Fomin P.A.1
-
Affiliations:
- M. A. Lavrent’ev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 15, No 1 (2022)
- Pages: 47-56
- Section: Articles
- URL: https://journal-vniispk.ru/2305-9117/article/view/288292
- DOI: https://doi.org/10.30826/CE22150106
- ID: 288292
Cite item
Abstract
A generalized two-step chemical kinetic model of detonation of dual-fuel stoichiometric mixture of synthesis-gas with oxidizer is presented. It allows calculation of heat release in the course of chemical reaction and variation of molar mass, internal energy, and specific heat ratio of the mixture without computation of its detailed chemical composition. An algorithm for calculating the induction period of chemical reaction in the mixture under consideration according to known formulae for calculating the induction period in single-fuel mixtures of carbon monoxide and hydrogen with an oxidizer has been developed. Two-dimensional numerical calculation of the multifront detonation wave structure in the mixture under consideration at different relations between fuels is performed. Chemical transformations are described by the proposed kinetic model. Detonation cell size and qualitative wave structure (including the transformation of the cellular structure from irregular to regular with the increase in hydrogen concentration) are shown to correspond well to experimental data.
Keywords
Full Text

About the authors
Anatoliy V. Trotsyuk
M. A. Lavrent’ev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: trotsyuk@hydro.nsc.ru
Candidate of Science in physics and mathematics, senior research scientist
Russian Federation, 15 Lavrent’ev Prosp., Novosibirsk 630090Pavel A. Fomin
M. A. Lavrent’ev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
Email: pavel_fomin_new@mail.ru
Doctor of Science in physics and mathematics, senior research scientist
Russian Federation, 15 Lavrent’ev Prosp., Novosibirsk 630090References
- Bykovskii, F. A., S. A. Zhdan, E. F. Vedernikov, and A. N. Samsonov. 2017. Scaling factor in continuous spin detonation of syngas–air mixtures. Combust. Explo. Shock Waves 53(2):187–198. doi: 10.1134/S0010508217020095.
- Austin, J. M., and J. E. Shepherd. 2003. Detonation in hydrocarbon fuel blends. Combust. Flame 132(1-2):73–90. doi: 10.1016/S0010-2180(02)00422-4.
- Gamezo, V. N., D. Desbordes, and E. S. Oran. 1999. Formation and evolution of two-dimensional cellular detonations. Combust. Flame 116(1-2):154–165. doi: 10.1016/S0010-2180(98)00031-5.
- Takeshima, N., K. Ozawa, N. Tsuboi, A. K. Hayashi, and Y. Morii. 2020. Numerical simulations on propane/oxygen detonation in a narrow channel using a detailed chemical mechanism: formation and detailed structure of irregular cells. Shock Waves 30:809–824. doi: 10.1007/s00193-020-00978-5.
- Tang-Yuk, K. C., X. C. Mi, J. H. S. Lee, H. D. Ng, and R. Deiterding. 2022. Transmission of a detonation wave across an inert layer. Combust. Flame. 236:111769. doi: 10.1016/j.combustflame.2021.111769.
- Fomin, P. A., A. V. Trotsyuk, and A. A. Vasil’ev. 2014. Approximate model of chemical reaction kinetics for detonation processes in mixture of CH4 with air. Combust. Sci. Technol. 186(10-11):1716–1735.
- Nikolaev, Yu. A., and D. V. Zak. 1988. Agreement of models of chemical reactions in gases with the second law of thermodynamics. Combust. Explo. Shock Waves 24(4):461–464. doi: 10.1007/BF00750021.
- Strickland-Constable, R. F. 1949. The burning velocity of gases in relation to the ignition delay. 3rd Symposium (International) on Combustion and Flame, and Explosion Phenomena 33(1):229–235.
- Nikolaev, Yu. A., A. A. Vasil’ev, and V. Yu. Ul’yanitskii. 2003. Gas detonation and its application in engineering and technologies. Combust. Explo. Shock Waves 39(4):382–410. doi: 10.1023/A:1024726619703.
- Vasil’ev, A. A. 2007. Detonation properties of the synthesis gas. Combust. Explo. Shock Waves 43(6):703–709. doi: 10.1007/s10573-007-0095-1.
- Lu, P. L., E. K. Dabora, and J. A. Nicholls. 1969. The structure of H2–CO–O2 detonations. Combust. Sci. Technol. 1(1):65–74. doi: 10.1080/00102206908952191.
- Strehlow, R. A., A. J. Crooker, and R. E. Cusey. 1967. Detonation initiation behind accelerating shock wave. Combust. Flame 11(4):339–351. doi: 10.1016/0010-2180(67)90023-5.
- Guirao, C. M., R. Knustautas, J. H. Lee, W. Benedick, and M. Berman. 1982. Hydrogen–air detonations. 19th Symposium (International) on Combustion Processes. Haifa, Israel. 583–590.
- Vasil’ev, A. A. 2007. Ignition delay in multifuel mixtures. Combust. Explo. Shock Waves 43(3):282–285. doi: 10.1007/s10573-007-0041-2.
- Starik, A. M., N. S. Titova, A. S. Sharipov, and V. E. Kozlov. 2010. Syngas oxidation mechanism. Combust. Explo. Shock Waves 46(5):491–506. doi: 10.1007/s10573-010-0065-x.
- Nikolaev, Yu. A., and M. E. Topchiyan. 1977. Analysis of equilibrium flows in detonation waves in gases. Combust. Explo. Shock Waves 13(3):327–338. doi: 10.1007/BF00740309.
- The NASA Computer program CEARUN (Chemical Equilibrium with Applications). Available at: https://cearun.grc.nasa.gov/index.html (accessed February 8, 2022).
- Trotsyuk, A. V. Numerical simulation of the structure of two-dimensional gaseous detonation of an H2–O2–Ar mixture. 1999. Combust. Explo. Shock Waves 35(5):549–558. doi: 10.1007/BF02674500.
- Godunov, S. K., ed. 1976. Chislennoe reshenie mnogomernykh zadach gazovoy dinamiki [Numerical solutions of multidimensional problems of gasdynamics]. Moscow: Nauka. 400 p.
- Yamamoto, S., and H. Daiguji. 1993. Higher-order-accurate upwind schemes for solving the compressible Euler and Navier–Stokes equations. Comput. Fluids 22(2/3):259–270. doi: 10.1016/0045-7930(93)90058-H.
- Daiguji, H., X. Yuan, and S. Yamamoto. 1997. Stabilization of higher-order high resolution schemes for the compressible Navier–Stokes equation. Int. J. Numer. Method. H. 7(2/3):250–274. doi: 10.1108/09615539710163293.
- Chakravarthy, S. R., and S. Osher. 1985. A new class of high accuracy TVD schemes for hyperbolic conservation laws. AIAA Paper No. 85-0363.
- Lin, S.-Y., and Y.-S. Chin. 1995. Comparison of higher resolution Euler schemes for aeroacoustic computations. AIAA J. 33:237–245.
- Batten, P., M. A. Leschziner, and U. C. Goldberg. 1997. Average-state Jacobians and implicit methods for compressible viscous and turbulent flows. J. Comput. Phys. 137(1):38–78.
- Coquel, F., and B. Perthame. 1998. Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics. SIAM J. Numer. Anal. 35(6):2223–2249.
- Shen, J. W., and X. Zhong. 1996. Semi-implicit Runge–Kutta schemes for non-autonomous differential equations in reactive flow computations. AIAA Paper No. 96-1969.
Supplementary files
