Development and testing of special equipment for video recording of detonation waves
- Authors: Samsonov A.N.1, Tsarkova A.V.1,2, Bykovskii F.A.1
- 
							Affiliations: 
							- M. A. Lavrentiev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
 
- Issue: Vol 15, No 1 (2022)
- Pages: 57-66
- Section: Articles
- URL: https://journal-vniispk.ru/2305-9117/article/view/288293
- DOI: https://doi.org/10.30826/CE22150107
- ID: 288293
Cite item
Abstract
The article describes the results of testing the developed device for optical registration of detonation processes. Some ways which help improving the quality of the obtained images registered during the experiments as well as methods of reducing both computational resources and time of data processing are investigated and described. Software and hardware methods of image adjustments and area recognition are considered. The article describes methods which are suitable for a specially designed device for recording detonation waves. The developed device was tested and showed its ability to register detonation processes provided acetylene or other carbon-containing gas for highlighting. Important feature of the device is the ability to conduct video recording by one 1092-pixel line using the maximum frame rate.
Full Text
 
												
	                        About the authors
Alexandr N. Samsonov
M. A. Lavrentiev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
							Author for correspondence.
							Email: samsalexandr@gmail.com
				                					                																			                								
junior research scientist
Russian Federation, 15 Lavrentiev Ave., Novosibirsk 630090Alena V. Tsarkova
M. A. Lavrentiev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
														Email: ar19122014@gmail.com
				                					                																			                								
engineer, student
Russian Federation, 15 Lavrentiev Ave., Novosibirsk 630090; 2 Pirogova Str., Novosibirsk 630090Fedor A. Bykovskii
M. A. Lavrentiev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
														Email: bykovskii@hydro.nsc.ru
				                					                																			                								
Doctor of Science in technology, chief research scientist
Russian Federation, 15 Lavrentiev Ave., Novosibirsk 630090References
- Frolov, S. M., V. S. Aksenov, A. V. Dubrovskii, A. E. Zangiev, V. S. Ivanov, S. N. Medvedev, and I. O. Shamshin. 2015. Chemiionization and acoustic diagnostics of the process in continuous- and pulse-detonation combustors. Dokl. Phys. Chem. 465(1):273–278.
- Bykovskii, F. A. 1981. Vysokoskorostnoy zhdushchiy fotoregistrator [The high-speed waiting photorecording device]. Zh. nauch. i prikl. fotografii i kinematografii [J. Scientific Applied Photography Cinematography] 2:85–89.
- Vojtsekhovskii, B. V., V. V. Mitrofanov, and M. E. Topchiyan. 1963. Struktura fronta detonatsii v gazakh [Gas detonation front structure]. Novosibirsk: Izd-vo SO AN SSSR. 168 p.
- Vasil’ev, V. V., T. I. Zahar’yash, A. G. Klimenko, A. I. Krymski, I. V. Marchishin, T. N. Nedosekina, V. N. Ovsyuk, L. N. Romashko, K. K. Svitashev, A. O. Suslyakov, N. X. Talipov, and L. V. Tishkovskaya. 1996. Fokal’nye matritsy dlya spektral’nogo diapazona 8–10 mkm na ob”emnykh kristallakh CdHgTe [Focal matrices for 8-um spectral range based on CdHgTe bulk crystal]. Optoelectronics Instrumentation Data Processing 4:32–39.
- Vasil’ev, V. V., V. G. Voinov, D. G. Esaev, T. I. Zakhar’yash, A. G. Klimenko, A. I. Kozlov, A. I. Krymskii, I. V. Marchishin, V. N. Ovsyuk, L. N. Romashko, K. K. Svitashev, A. O. Suslyakov, N. Kh. Talipov, Yu. G. Sidorov, V. C. Varavin, S. A. Dvoretskii, and N. N. Mikhailov. 1998. Focal photodetector arrays based on CdHgTe heteroepitaxial layers grown by molecular-beam epitaxy on GaAs substrates. J. Opt. Technol. 65(1):68–72.
- Samsonov, A. 2010. The device for high-speed digital recording and analysis of detonation waves. 10th Conference (International) on Pattern Recognition and Image Analysis: New Information Technologies Proceedings. St. Petersburg. 2:121–124.
- Samsonov, A. N. 2015. A device for high-speed video filming of supersonic flows and moving particles. Pattern Recognition Image Analysis 25(2):255–262.
- Samsonov, A. N., and K. V. Samoilova. 2018. High speed video recording system on a chip for detonation jet engine testing. MATEC Web Conf. 158:01028.
- Bykovskii F. A., S. A. Zhdan, E. F. Vedernikov, A. E. Tarnaikin, and A. N. Samsonov. 2020. Continuous detonation of a hydrogen–oxygen gas mixture in a 100-mm planeradial combustor with exhaustion toward the periphery. Shock Waves 30(3):235–243.
- Dubois, J., D. Ginhac, M. Paindavoine, and B. Heyrman. 2008. A 10 000 fps CMOS sensor with massively parallel image processing. IEEE J. Solid-St. Circ. 43(3):706–717. doi: 10.1109/JSSC.2007.916618.
- Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov, 2021. Continuous multifront detonation of kerosene–air mixture in an annular combustor with variations of its geometry. Shock Waves 31(8):829–839.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted





